Source code for aequilibrae.paths.linear_approximation

import logging
import os
from functools import partial
from pathlib import Path
from tempfile import gettempdir
from typing import List, Dict

import numpy as np
from aequilibrae.paths.AoN import copy_two_dimensions, copy_three_dimensions
from aequilibrae.paths.AoN import linear_combination, linear_combination_skims, aggregate_link_costs
from aequilibrae.paths.AoN import sum_a_times_b_minus_c, linear_combination_1d
from aequilibrae.paths.AoN import triple_linear_combination, triple_linear_combination_skims
from scipy.optimize import root_scalar

from aequilibrae.paths.all_or_nothing import allOrNothing
from aequilibrae.paths.results import AssignmentResults
from aequilibrae.paths.traffic_class import TrafficClass

if False:
    from aequilibrae.paths.traffic_assignment import TrafficAssignment

from aequilibrae.utils.aeq_signal import SIGNAL, simple_progress
from aequilibrae.utils.interface.worker_thread import WorkerThread


[docs] class LinearApproximation(WorkerThread): equilibration = SIGNAL(object) assignment = SIGNAL(object) signal = SIGNAL(object) def __init__(self, assig_spec, algorithm, project=None) -> None: WorkerThread.__init__(self, None) self.signal.emit(["set_text", "Linear Approximation"]) self.logger = project.logger if project else logging.getLogger("aequilibrae") self.project_path = project.project_base_path if project else gettempdir() self.algorithm = algorithm self.rgap_target = assig_spec.rgap_target self.max_iter = assig_spec.max_iter self.cores = assig_spec.cores self.iteration_issue = [] self.convergence_report = {"iteration": [], "rgap": [], "alpha": [], "warnings": []} if algorithm in ["cfw", "bfw"]: self.convergence_report["beta0"] = [] self.convergence_report["beta1"] = [] self.convergence_report["beta2"] = [] self.assig = assig_spec # type: TrafficAssignment if None in [ assig_spec.classes, assig_spec.vdf, assig_spec.capacity_field, assig_spec.time_field, assig_spec.vdf_parameters, ]: all_par = "Traffic classes, VDF, VDF_parameters, capacity field & time_field" raise Exception( "Parameter missing. Setting the algorithm is the last thing to do " f"when assigning. Check if you have all of these: {all_par}" ) self.traffic_classes = assig_spec.classes # type: List[TrafficClass] self.num_classes = len(assig_spec.classes) self.cap_field = assig_spec.capacity_field self.time_field = assig_spec.time_field self.vdf = assig_spec.vdf self.vdf_parameters = assig_spec.vdf_parameters self.procedure_id = assig_spec.procedure_id self.iter = 0 self.rgap = np.inf self.stepsize = 1.0 self.conjugate_stepsize = 0.0 self.fw_class_flow = 0 # rgap can be a bit wiggly, specifying how many times we need to be below target rgap is a quick way to # ensure a better result. We might want to demand that the solution is that many consecutive times below. self.steps_below_needed_to_terminate = assig_spec.steps_below_needed_to_terminate self.steps_below = 0 # if this is one, we do not have a new direction and will get stuck. Make it 1. self.conjugate_direction_max = 0.99999 # if FW stepsize is zero, we set it to the corresponding MSA stepsize and then need to not make # the step direction conjugate to the previous direction. self.do_fw_step = False self.conjugate_failed = False self.do_conjugate_step = False # BFW specific stuff self.betas = np.array([1.0, 0.0, 0.0]) # Instantiates the arrays that we will use over and over self.capacity = assig_spec.capacity # Creates preload vector from preloads self.preload = None if assig_spec.preloads is not None: cols = assig_spec.preloads.columns.difference(["link_id", "direction"]) self.preload = assig_spec.preloads[cols].sum(axis=1).to_numpy() self.free_flow_tt = assig_spec.free_flow_tt self.fw_total_flow = assig_spec.total_flow self.congested_time = assig_spec.congested_time self.vdf_der = np.array(assig_spec.congested_time, copy=True) self.congested_value = np.array(assig_spec.congested_time, copy=True) self.step_direction = {} # type: Dict[AssignmentResults] self.previous_step_direction = {} # type: Dict[AssignmentResults] self.temp_step_direction_for_copy = {} # type: Dict[AssignmentResults] self.aons = {} for c in self.traffic_classes: r = AssignmentResults() r.prepare(c.graph, c.matrix) self.step_direction[c._id] = r if self.algorithm in ["cfw", "bfw"]: for c in self.traffic_classes: for d in [self.step_direction, self.previous_step_direction, self.temp_step_direction_for_copy]: r = AssignmentResults() r.prepare(c.graph, c.matrix) r.compact_link_loads = np.zeros([]) r.compact_total_link_loads = np.zeros([]) d[c._id] = r
[docs] def calculate_conjugate_stepsize(self): self.vdf.apply_derivative( self.vdf_der, self.fw_total_flow, self.capacity, self.free_flow_tt, *self.vdf_parameters, self.cores ) numerator = 0.0 denominator = 0.0 prev_dir_minus_current_sol = {} aon_minus_current_sol = {} aon_minus_prev_dir = {} for c in self.traffic_classes: stp_dir = self.step_direction[c._id] prev_dir_minus_current_sol[c._id] = np.sum(stp_dir.link_loads[:, :] - c.results.link_loads[:, :], axis=1) aon_minus_current_sol[c._id] = np.sum(c._aon_results.link_loads[:, :] - c.results.link_loads[:, :], axis=1) aon_minus_prev_dir[c._id] = np.sum(c._aon_results.link_loads[:, :] - stp_dir.link_loads[:, :], axis=1) for c_0 in self.traffic_classes: for c_1 in self.traffic_classes: numerator += prev_dir_minus_current_sol[c_0._id] * aon_minus_current_sol[c_1._id] denominator += prev_dir_minus_current_sol[c_0._id] * aon_minus_prev_dir[c_1._id] numerator = np.sum(numerator * self.vdf_der) denominator = np.sum(denominator * self.vdf_der) alpha = numerator / denominator if alpha < 0.0: self.conjugate_stepsize = 0.0 elif alpha > self.conjugate_direction_max: self.conjugate_stepsize = self.conjugate_direction_max else: self.conjugate_stepsize = alpha # for reporting, we use a different convention, consistent with BFW: beta_0 corresponds to multiplier for AON; # in calculations we follow the conventions of our TRB paper. self.betas[0] = 1.0 - self.conjugate_stepsize self.betas[1] = self.conjugate_stepsize self.betas[2] = 0.0
[docs] def calculate_biconjugate_direction(self): self.vdf.apply_derivative( self.vdf_der, self.fw_total_flow, self.capacity, self.free_flow_tt, *self.vdf_parameters, self.cores ) mu_numerator = 0.0 mu_denominator = 0.0 nu_nom = 0.0 nu_denom = 0.0 w_ = {} x_ = {} y_ = {} z_ = {} for c in self.traffic_classes: sd = self.step_direction[c._id].link_loads[:, :] psd = self.previous_step_direction[c._id].link_loads[:, :] ll = c.results.link_loads[:, :] x_[c._id] = np.sum(sd * self.stepsize + psd * (1.0 - self.stepsize) - ll, axis=1) y_[c._id] = np.sum(c._aon_results.link_loads[:, :] - ll, axis=1) z_[c._id] = np.sum(sd - ll, axis=1) w_[c._id] = np.sum(psd - sd, axis=1) for c_0 in self.traffic_classes: for c_1 in self.traffic_classes: mu_numerator += x_[c_0._id] * y_[c_1._id] mu_denominator += x_[c_0._id] * w_[c_1._id] nu_nom += z_[c_0._id] * y_[c_1._id] nu_denom += z_[c_0._id] * z_[c_1._id] mu_numerator = np.sum(mu_numerator * self.vdf_der) mu_denominator = np.sum(mu_denominator * self.vdf_der) if mu_denominator == 0.0: mu = 0.0 else: mu = -mu_numerator / mu_denominator mu = max(0.0, mu) nu_nom = np.sum(nu_nom * self.vdf_der) nu_denom = np.sum(nu_denom * self.vdf_der) if nu_denom == 0.0: nu = 0.0 else: nu = -(nu_nom / nu_denom) + mu * self.stepsize / (1.0 - self.stepsize) nu = max(0.0, nu) self.betas[0] = 1.0 / (1.0 + nu + mu) self.betas[1] = nu * self.betas[0] self.betas[2] = mu * self.betas[0]
def __calculate_step_direction(self): """Calculates step direction depending on the method""" sd_flows = [] # 2nd iteration is a fw step. if the previous step replaced the aggregated # solution so far, we need to start anew. if self.iter == 2 or self.stepsize == 1.0 or self.do_fw_step or self.algorithm in ["msa", "frank-wolfe"]: self.do_fw_step = False self.do_conjugate_step = True self.conjugate_stepsize = 0.0 for c in self.traffic_classes: aon_res = c._aon_results stp_dir_res = self.step_direction[c._id] copy_two_dimensions(stp_dir_res.link_loads, aon_res.link_loads, self.cores) stp_dir_res.total_flows() if c.results.num_skims > 0: copy_three_dimensions(stp_dir_res.skims.matrix_view, aon_res.skims.matrix_view, self.cores) sd_flows.append(aon_res.total_link_loads) if c._selected_links: aux_res = self.aons[c._id].aux_res for name, idx in c._aon_results._selected_links.items(): copy_two_dimensions( self.sl_step_dir_ll[c._id][name]["sdr"], np.sum(aux_res.temp_sl_link_loading, axis=0)[idx, :, :], self.cores, ) copy_three_dimensions( self.sl_step_dir_od[c._id][name]["sdr"], np.sum(aux_res.temp_sl_od_matrix, axis=0)[idx, :, :, :], self.cores, ) # 3rd iteration is cfw. also, if we had to reset direction search we need a cfw step before bfw elif (self.iter == 3) or (self.do_conjugate_step) or (self.algorithm == "cfw"): self.do_conjugate_step = False self.calculate_conjugate_stepsize() for c in self.traffic_classes: sdr = self.step_direction[c._id] previous = self.previous_step_direction[c._id] copy_two_dimensions(previous.link_loads, sdr.link_loads, self.cores) previous.total_flows() if c.results.num_skims > 0: copy_three_dimensions(previous.skims.matrix_view, sdr.skims.matrix_view, self.cores) linear_combination( sdr.link_loads, sdr.link_loads, c._aon_results.link_loads, self.conjugate_stepsize, self.cores ) if c.results.num_skims > 0: linear_combination_skims( sdr.skims.matrix_view, sdr.skims.matrix_view, c._aon_results.skims.matrix_view, self.conjugate_stepsize, self.cores, ) if c._selected_links: aux_res = self.aons[c._id].aux_res for name, idx in c._aon_results._selected_links.items(): sl_step_dir_ll = self.sl_step_dir_ll[c._id][name] sl_step_dir_od = self.sl_step_dir_od[c._id][name] copy_two_dimensions( sl_step_dir_ll["prev_sdr"], sl_step_dir_ll["sdr"], self.cores, ) copy_three_dimensions( sl_step_dir_od["prev_sdr"], sl_step_dir_od["sdr"], self.cores, ) linear_combination( sl_step_dir_ll["sdr"], sl_step_dir_ll["sdr"], np.sum(aux_res.temp_sl_link_loading, axis=0)[idx, :, :], self.conjugate_stepsize, self.cores, ) linear_combination_skims( sl_step_dir_od["sdr"], sl_step_dir_od["sdr"], np.sum(aux_res.temp_sl_od_matrix, axis=0)[idx, :, :, :], self.conjugate_stepsize, self.cores, ) sdr.total_flows() sd_flows.append(sdr.total_link_loads) # biconjugate else: self.calculate_biconjugate_direction() # deep copy because we overwrite step_direction but need it on next iteration for c in self.traffic_classes: ppst = self.temp_step_direction_for_copy[c._id] # type: AssignmentResults prev_stp_dir = self.previous_step_direction[c._id] # type: AssignmentResults stp_dir = self.step_direction[c._id] # type: AssignmentResults copy_two_dimensions(ppst.link_loads, stp_dir.link_loads, self.cores) ppst.total_flows() if c.results.num_skims > 0: copy_three_dimensions(ppst.skims.matrix_view, stp_dir.skims.matrix_view, self.cores) triple_linear_combination( stp_dir.link_loads, c._aon_results.link_loads, stp_dir.link_loads, prev_stp_dir.link_loads, self.betas, self.cores, ) stp_dir.total_flows() if c.results.num_skims > 0: triple_linear_combination_skims( stp_dir.skims.matrix_view, c._aon_results.skims.matrix_view, stp_dir.skims.matrix_view, prev_stp_dir.skims.matrix_view, self.betas, self.cores, ) if c._selected_links: aux_res = self.aons[c._id].aux_res for name, idx in c._aon_results._selected_links.items(): sl_step_dir_ll = self.sl_step_dir_ll[c._id][name] sl_step_dir_od = self.sl_step_dir_od[c._id][name] copy_two_dimensions( sl_step_dir_ll["temp_prev_sdr"], sl_step_dir_ll["sdr"], self.cores, ) copy_three_dimensions( sl_step_dir_od["temp_prev_sdr"], sl_step_dir_od["sdr"], self.cores, ) triple_linear_combination( sl_step_dir_ll["sdr"], np.sum(aux_res.temp_sl_link_loading, axis=0)[idx, :, :], sl_step_dir_ll["sdr"], sl_step_dir_ll["prev_sdr"], self.betas, self.cores, ) triple_linear_combination_skims( sl_step_dir_od["sdr"], np.sum(aux_res.temp_sl_od_matrix, axis=0)[idx, :, :, :], sl_step_dir_od["sdr"], sl_step_dir_od["prev_sdr"], self.betas, self.cores, ) copy_two_dimensions( sl_step_dir_ll["prev_sdr"], sl_step_dir_ll["temp_prev_sdr"], self.cores, ) copy_three_dimensions( sl_step_dir_od["prev_sdr"], sl_step_dir_od["temp_prev_sdr"], self.cores, ) sd_flows.append(np.sum(stp_dir.link_loads, axis=1)) copy_two_dimensions(prev_stp_dir.link_loads, ppst.link_loads, self.cores) prev_stp_dir.total_flows() if c.results.num_skims > 0: copy_three_dimensions(prev_stp_dir.skims.matrix_view, ppst.skims.matrix_view, self.cores) self.step_direction_flow = np.sum(sd_flows, axis=0) def __maybe_create_path_file_directories(self): path_base_dir = os.path.join(self.project_path, "path_files", self.procedure_id) for c in self.traffic_classes: if c._aon_results.save_path_file: c._aon_results.path_file_dir = os.path.join( path_base_dir, f"iter{self.iter}", f"path_c{c.mode}_{c._id}" ) Path(c._aon_results.path_file_dir).mkdir(parents=True, exist_ok=True) if self.iter == 1: # save simplified graph correspondences, this could change after assignment c.graph.save_compressed_correspondence(path_base_dir, c.mode, c._id)
[docs] def doWork(self): self.execute()
[docs] def execute(self): # noqa: C901 # We build the fixed cost field self.sl_step_dir_ll = {} self.sl_step_dir_od = {} for c in self.traffic_classes: # Copying select link dictionary that maps name to its relevant matrices into the class' results c._aon_results._selected_links = c._selected_links c.results._selected_links = c._selected_links link_loads_step_dir_shape = ( c.graph.compact_num_links, c.results.classes["number"], ) od_step_dir_shape = ( c.graph.num_zones, c.graph.num_zones, c.results.classes["number"], ) self.sl_step_dir_ll[c._id] = {} self.sl_step_dir_od[c._id] = {} for name in c._selected_links.keys(): self.sl_step_dir_ll[c._id][name] = { "sdr": np.zeros(link_loads_step_dir_shape, dtype=c.graph.default_types("float")), "prev_sdr": np.zeros(link_loads_step_dir_shape, dtype=c.graph.default_types("float")), "temp_prev_sdr": np.zeros(link_loads_step_dir_shape, dtype=c.graph.default_types("float")), } self.sl_step_dir_od[c._id][name] = { "sdr": np.zeros(od_step_dir_shape, dtype=c.graph.default_types("float")), "prev_sdr": np.zeros(od_step_dir_shape, dtype=c.graph.default_types("float")), "temp_prev_sdr": np.zeros(od_step_dir_shape, dtype=c.graph.default_types("float")), } # Sizes the temporary objects used for the results c.results.prepare(c.graph, c.matrix) c._aon_results.prepare(c.graph, c.matrix) c.results.reset() # Prepares the fixed cost to be used if c.fixed_cost_field: # divide fixed cost by volume-dependent prefactor (vot) such that we don't have to do it for # each occurrence in the objective function. TODO: Need to think about cost skims here, we do # not want this there I think v = c.graph.graph[c.fixed_cost_field].values[:] c.fixed_cost[c.graph.graph.__supernet_id__] = v * c.fc_multiplier / c.vot c.fixed_cost[np.isnan(c.fixed_cost)] = 0 # TODO: Review how to eliminate this. It looks unnecessary # Just need to create some arrays for cost c.graph.set_graph(self.time_field) self.aons[c._id] = allOrNothing(c._id, c.matrix, c.graph, c._aon_results) self.logger.info(f"{self.algorithm} Assignment STATS") self.logger.info("Iteration, RelativeGap, stepsize") msg = "Equilibrium Assignment" for self.iter in simple_progress(range(1, self.max_iter + 1), self.signal, msg): # noqa: B020 self.iteration_issue = [] aon_flows = [] self.__maybe_create_path_file_directories() for c in self.traffic_classes: # type: TrafficClass msg = f"All-or-Nothing - Traffic Class: {c._id}" self.signal.emit(["set_text", msg]) # cost = c.fixed_cost / c.vot + self.congested_time # now only once cost = c.fixed_cost + self.congested_time aggregate_link_costs(cost, c.graph.compact_cost, c.results.crosswalk) aon = self.aons[c._id] # This is a new object every iteration, with new aux_res self.signal.emit(["refresh"]) self.signal.emit(["reset"]) aon.signal = self.signal aon.execute() c._aon_results.link_loads *= c.pce c._aon_results.total_flows() aon_flows.append(c._aon_results.total_link_loads) self.aon_total_flow = np.sum(aon_flows, axis=0) flows = [] if self.iter == 1: for c in self.traffic_classes: copy_two_dimensions(c.results.link_loads, c._aon_results.link_loads, self.cores) c.results.total_flows() if c.results.num_skims > 0: copy_three_dimensions(c.results.skims.matrix_view, c._aon_results.skims.matrix_view, self.cores) if c._selected_links: for name, idx in c._aon_results._selected_links.items(): # Copy the temporary results into the final od matrix, referenced by link_set name # The temp has an index associated with the link_set name copy_three_dimensions( c.results.select_link_od.matrix[name], # matrix being written into np.sum(self.aons[c._id].aux_res.temp_sl_od_matrix, axis=0)[ idx, :, :, : ], # results after the iteration self.cores, # core count ) copy_two_dimensions( c.results.select_link_loading[name], # ouput matrix np.sum(self.aons[c._id].aux_res.temp_sl_link_loading, axis=0)[idx, :, :], # matrix 1 self.cores, # core count ) flows.append(c.results.total_link_loads) else: self.__calculate_step_direction() self.calculate_stepsize() for c in self.traffic_classes: stp_dir = self.step_direction[c._id] cls_res = c.results linear_combination( cls_res.link_loads, stp_dir.link_loads, cls_res.link_loads, self.stepsize, self.cores ) if cls_res.num_skims > 0: linear_combination_skims( cls_res.skims.matrix_view, stp_dir.skims.matrix_view, cls_res.skims.matrix_view, self.stepsize, self.cores, ) if c._selected_links: for name, idx in c._aon_results._selected_links.items(): # Copy the temporary results into the final od matrix, referenced by link_set name # The temp flows have an index associated with the link_set name linear_combination_skims( cls_res.select_link_od.matrix[name], # output matrix self.sl_step_dir_od[c._id][name]["sdr"], cls_res.select_link_od.matrix[name], # matrix 2 (previous iteration) self.stepsize, # stepsize self.cores, # core count ) linear_combination( cls_res.select_link_loading[name], # output matrix self.sl_step_dir_ll[c._id][name]["sdr"], cls_res.select_link_loading[name], # matrix 2 (previous iteration) self.stepsize, # stepsize self.cores, # core count ) cls_res.total_flows() flows.append(cls_res.total_link_loads) self.fw_total_flow = np.sum(flows, axis=0) if self.preload is not None: self.fw_total_flow += self.preload if self.algorithm == "all-or-nothing": break # Check convergence # This needs to be done with the current costs, and not the future ones converged = self.check_convergence() if self.iter > 1 else False self.vdf.apply_vdf( self.congested_time, self.fw_total_flow, self.capacity, self.free_flow_tt, *self.vdf_parameters, self.cores, ) for c in self.traffic_classes: if self.time_field in c.graph.skim_fields: k = c.graph.skim_fields.index(self.time_field) aggregate_link_costs(self.congested_time[:], c.graph.compact_skims[:, k], c.results.crosswalk) self.convergence_report["iteration"].append(self.iter) self.convergence_report["rgap"].append(self.rgap) self.convergence_report["warnings"].append("; ".join(self.iteration_issue)) self.convergence_report["alpha"].append(self.stepsize) if self.algorithm in ["cfw", "bfw"]: self.convergence_report["beta0"].append(self.betas[0]) self.convergence_report["beta1"].append(self.betas[1]) self.convergence_report["beta2"].append(self.betas[2]) self.logger.info(f"{self.iter},{self.rgap},{self.stepsize}") if converged: self.steps_below += 1 if self.steps_below >= self.steps_below_needed_to_terminate: break else: self.steps_below = 0 if self.iter < self.max_iter: for c in self.traffic_classes: c._aon_results.reset() if self.time_field not in c.graph.skim_fields: continue idx = c.graph.skim_fields.index(self.time_field) c.graph.skims[:, idx] = self.congested_time[:] msg = f"Equilibrium Assignment - Iteration: {self.iter}/{self.max_iter} - RGap: {self.rgap:.6}" self.signal.emit(["set_text", msg]) for c in self.traffic_classes: c.results.link_loads /= c.pce c.results.total_flows() c.congested_time = self.congested_time if (self.rgap > self.rgap_target) and (self.algorithm != "all-or-nothing"): self.logger.error(f"Desired RGap of {self.rgap_target} was NOT reached") self.logger.info(f"{self.algorithm} Assignment finished. {self.iter} iterations and {self.rgap} final gap") self.signal.emit(["finished"])
def __derivative_of_objective_stepsize_dependent(self, stepsize, const_term): """The stepsize-dependent part of the derivative of the objective function. If fixed costs are defined, the corresponding contribution needs to be passed in""" x = np.zeros_like(self.fw_total_flow) linear_combination_1d(x, self.step_direction_flow, self.fw_total_flow, stepsize, self.cores) # x = self.fw_total_flow + stepsize * (self.step_direction_flow - self.fw_total_flow) self.vdf.apply_vdf(self.congested_value, x, self.capacity, self.free_flow_tt, *self.vdf_parameters, self.cores) link_cost_term = sum_a_times_b_minus_c( self.congested_value, self.step_direction_flow, self.fw_total_flow, self.cores ) return link_cost_term + const_term def __derivative_of_objective_stepsize_independent(self): """The part of the derivative of the objective function that does not dependent on stepsize. Non-zero only for fixed cost contributions.""" class_specific_term = 0.0 for c in self.traffic_classes: # fixed cost is scaled by vot class_link_costs = sum_a_times_b_minus_c( c.fixed_cost, self.step_direction[c._id].link_loads[:, 0], c.results.link_loads[:, 0], self.cores ) class_specific_term += class_link_costs return class_specific_term
[docs] def calculate_stepsize(self): """Calculate optimal stepsize in descent direction""" self.stepsize_has_been_reset = False if self.algorithm == "msa": self.stepsize = 1.0 / self.iter return class_specific_term = self.__derivative_of_objective_stepsize_independent() derivative_of_objective = partial( self.__derivative_of_objective_stepsize_dependent, const_term=class_specific_term ) x_tol = max(min(1e-6, self.rgap * 1e-5), 1e-12) try: min_res = root_scalar(derivative_of_objective, bracket=[0, 1], xtol=x_tol) self.stepsize = min_res.root if not min_res.converged: self.logger.warning("Descent direction stepsize finder has not converged") self.conjugate_failed = False except ValueError as e: # We can have iterations where the objective function is not *strictly* convex, but the scipy method cannot deal # with this. Stepsize is then either given by 1 or 0, depending on where the objective function is smaller. # However, using zero would mean the overall solution would not get updated, and therefore we assert the stepsize # in order to add a small fraction of the AoN. A heuristic value equal to the corresponding MSA step size # seems to work well in practice. if self.algorithm == "bfw": self.betas.fill(-1) if abs(derivative_of_objective(0.0)) < abs(derivative_of_objective(1.0)): if self.algorithm == "frank-wolfe" or self.conjugate_failed: tiny_step = 1e-2 / self.iter # use a fraction of the MSA stepsize. We observe that using 1e-4 # works well in practice, however for a large number of iterations this might be too much so # use this heuristic instead. self.logger.warning(f"# Alert: Adding {tiny_step} as step size to make it non-zero. {e.args}") self.stepsize = tiny_step else: self.stepsize = 0.0 # need to reset conjugate / bi-conjugate direction search self.do_fw_step = True self.conjugate_failed = True msg = f"Found bad conjugate direction step. Performing FW search. {e.args}" self.logger.warning(msg) self.iteration_issue.append(msg) # By doing it recursively, we avoid doing the same AoN again self.__calculate_step_direction() self.calculate_stepsize() else: # Do we want to keep some of the old solution, or just throw away everything? self.stepsize = 1.0 self.logger.warning("Reset line search") self.stepsize_has_been_reset = True assert 0 <= self.stepsize <= 1.0
[docs] def check_convergence(self): """Calculate relative gap and return ``True`` if it is smaller than desired precision""" if self.stepsize_has_been_reset: return False aon_cost = np.sum(self.congested_time * self.aon_total_flow) current_cost = np.sum(self.congested_time * self.fw_total_flow) self.rgap = abs(current_cost - aon_cost) / current_cost if self.rgap_target >= self.rgap: return True return False