AequilibraE for QGIS

Pedro Camargo

Jul 14, 2025

CONTENTS

1	Getting Started	1
2	Menus in Detail	7
3	Processing Tools	97
A	Contributing to AequilibraE for QGIS	117
B	Plugin internationalization (i18n)	121
С	Support & Sponsors	127
D	Cite us!	129
Inc	lex	131

CHAPTER

ONE

GETTING STARTED

In this section we describe how you can install AequilibraE's QGIS plugin.

Note

The recommendations on this page are as current as of April 2024.

1.1 Installation

AequilibraE is available from the QGIS plugin repository, and we recommend you download it using the instructions below.

1.1.1 Step-by-step installation

The steps for installing AequilibraE are the same as for any QGIS plugin. Go to the Plugins panel and click on Manage and Install Plugins.

In the tab All, search for QAequilibraE.

Q Plugins All (1226)	×
All Q gaeq	
Installed qaequilibrae qaequilibrae	*
> Not installed Transportation modeling toolbox for QGIS	
Install from ZIP QAequilibraE is the GUI for AequilibraE, a transportation modeling package designed to be an open-source alternative to traditional commercial package is a comprehensive set of tools for modeling and visualization, including including fast equilibrium traffic assignment, synthetic gravity models, network editi GTFS importer. http://www.aequilibrae.com/.	redibly
☆☆☆☆☆ 12 rating vote(s), 3976 downloads	
Tags traffic, transport, modeling, transportation,	gtfs
More info homepage bug tracker code repository	
Author Pedro Camargo Available version (stable) 1.0.0 updated at 02/03/2024 07:43	
Upgrade All Install Plugi	
	Ajuda

After selecting the plugin installation, you will be faced with the question of whether you want to download its dependencies, which are required for using most of the features. This is necessary because AequilibraE's algorithms rely on compiled extensions, but it is against the QGIS's community guidelines to upload binaries to the repository.

If you select to download the packages, QGIS will freeze for a few seconds before showing the image below.

Otherwise, a message warning about installation problems will be shown, and your plugin will be non-functional.

1.2 Plugin Repository

With the plugin repository, it is now possible to use the latest version in develop without waiting for the next release!

To configure it, let's go once again to the Plugins menu, as shown here.

Select the **Settings** tab and check the box for **Show also experimental plugins** (step 1). The versions of QAequilibraE made available at the plugin store are not the versions for release and are labelled as experimental.

X
✓ Check for Updates on Startup
If this function is enabled, QGIS will inform you every 3 days when a plugin update is available. Otherwise, fetching repositories will be performed during opening of the Plugin Manager window.
Show also Experimental Plugins
Experimental plugins are generally unsuitable for production use. These plugins are in early stages of development, and should be considered 'incomplete' or 'proof of concept' tools. QGIS does not recommend installing these plugins unless you intend to use them for testing purposes.
▼ Show also Deprecated Plugins
Deprecated plugins are generally unsuitable for production use. These plugins are unmaintained, and should be considered 'obsolete' tools. QGIS does not recommend installing these plugins unless you still need it and there are no other alternatives available.
Plugin Repositories
Status Name URL
Reload al Repositories

Then, click on the **Add** button (step 2). A new window will open. Fill the name and URL fields with the following data:

Listing 1: Plugin Repository

```
name: qaequilibrae
URL: https://aequilibrae.com/develop/qgis/_static/plugin.xml
```

Then, just click on the **OK** button.

Name	qaequilibrae
URL	/qgis/_static/plugin.xml
Parameters	?qgis=3.40
Authentication	Clear Edit
Enabled	✓

The QGIS is going to validate the provided URL. It should be really quick. You'll notice that qaequilibrae is now appearing at your plugin repositories.

Q Plugins Settings	X
🊈 All	✓ Check for Updates on Startup
Installed	If this function is enabled, QGIS will inform you every 3 days when a plugin update is available. Otherwise, fetching repositories will be performed during opening of the Plugin Manager window.
Not installed	▼ 🗸 Show also Experimental Plugins
🔛 Upgradeable	Experimental plugins are generally unsuitable for production use. These plugins are in early stages of development, and should be considered incomplete' or 'proof of concept' tools. QGIS does not recommend installing these plugins unless you intend to use them for testing purposes.
🥼 Install from ZIP	Show also Deprecated Plugins
Settings	Deprecated plugins are generally unsuitable for production use. These plugins are unmaintained, and should be considered 'obsolete' tools. QGIS does not recommend installing these plugins unless you still need it and there are no other alternatives available.
	Plugin Repositories
	Status Name URL
	Connected Repositório Oficial de Complementos do QGIS https://plugins.qgis.org/plugins/plugins.xml?qgis=3.40
	Connected qaequilbrae /qgis/_static/plugin.xml?qgis=3.4
	4 · · · · · · · · · · · · · · · · · · ·
	w Reload all Repositories 中国
	Close Help

Finally, select the Upgradeable tab. You'll notice that QAequilibraE has a newer version to be installed. Click on

qaequilibrae, and hit the **Upgrade Experimental Plugin** button. The installation process should be the same as above, as you need to allow the installation of external libraries.

Q Plugins Upgradeable (2)			×
溢 All	Q. Search		
Installed	<mark>▼ Plugin Reloader</mark> ▼ <mark>N</mark> qaequilibrae	There is a new version available	
海 Not installed		his plugin has an experiment	tal version available
😒 Upgradeable		qaequilibrae	
11 Install from ZIP		Transportation modeling too	olbox for QGIS
🔆 Settings		alternative to traditional commercial	E, a transportation modeling package designed to be packages. It is a comprehensive set of tools for mod equilibrium traffic assignment, synthetic gravity mo ww.aequilibrae.com/.
		Tags	transport, transportation, modeling, modeling, traf
		More info	homepage bug tracker code repository
		Author	Pedro Camargo
		Installed version	1.4.4
		Available version (experimental)	25.192.587424
		4 Upgrade All	Uninstall Plugin
			Close Help

If you have any problems with this step, please check the official QGIS documentation.

1.3 Saving as QGIS Project

Since version 1.0.1, our users can save their on-going projects directly through the QGIS saving menu! This feature allows you to save both your AequilibraE project and temporary layers. The temporary layers are stored in **qgis_layer.sqlite**, a database automatically created to store these layers. All you have to do is go to the Project panel and select **Save** or **Save as**, indicate where you want to store your project file, and press save!

In the interest of data integrity, if you have open AequilibraE layers into your QGIS Project and close the AequilibraE project, these layers are removed from your open QGIS project.

When reopening the QGIS project containing an AequilibraE model, you will notice that the project stored is automatically reopened by QAequilibraE.

CHAPTER

MENUS IN DETAIL

In this section you can find a deep dive into modeling with AequilibraE, as a start guide to a complete view into AequilibraE's data structure. Each and every one of the following sub-sections are related to one AequilibraE's main functionalities.

Most screenshots in this section are related to Sioux Falls, a standard example in transportation network algorithm studies.

In the following sections, we present an illustrated example of a realistic modeling workflow for the beginner modeler out there. You can easily create a Sioux Falls model using our *create example* tool. The remaining of the data used in the examples can be downloaded here.

As to not upset those who think that Sioux Falls is not a realistic example (you would be right to think so), the example data is also available for the Chicago regional model, which has nearly 40,000 links and almost 1,800 zones.

Got a bigger instance we could use as an example? Send it over!

2.1 AequilibraE Project

This page is dedicated to a practical implementation of the AequilibraE project. In case you are interested in better understanding its structure, please visit its documentation webpage.

Under the project tab, there are some options to choose from and the following sections explore some of these actions.

AequilibraE		ð×
Project.	Open Project	
Redefile	Create example	
Only,	Parameters	
1904	logfile	
faths a	Run procedures	
Participa.	Close project	
Path 75	mpat.	-
68.		
100 B		

2.1.1 Open & Close project

These options are pretty straightforward and are used either to open or close a project. You just have to click **Project** > **Open project** to open a project, and **Project** > **Close project** to close it.

Keep in mind that to open another project or to create a new one, you **must** close the currently open project, otherwise AequilibraE is going to return an error.

2.1.2 Create example

AequilibraE has three different example sets one can use as learning tool, and they were all made available within the QGIS ecosystem.

Within **Project > Create example**, select one of the available models, the desired location of the output folder, and just press *Create*. The window will close automatically and you can open the project folder in the Project tab.

uilibraE	>
e models:	
falls	*
Choose output folder	
Create	

2.1.3 Parameters

The parameters file is part of the AequilibraE package for Python, so all the reference documentation for this section can be found in its documentation page.

The QGIS plugin, however, has a nice interface to view and edit the parameters file, which can be accessed through **Project > Parameters**. This interface, depicted below, allows one to edit and validate parameters before submitting them as the new parameter file for all AequilibraE procedures.

Q AequilibraE - Parameters	<
5	
-assignment:	
- equilibrium:	
maximum_iterations: 250	
rgap: 0.0001	
+distribution:	
+network:	
-system:	
cpus: 0	
default_directory: C:\Users\pedro.camargo\Documents\sourcecode\drt	
driving side: nght	
logging: true	
logging_directory: D:\release\Sample models\sioux_falls_2020_02_15	
spatialite path: C:\Users\pedro\Documents\mod_spatialite-NG-win-amd64	
temp directory: /temp	
4	
Validate Save to disk Cancel and close]

2.1.4 Log file

The log file contains information about which actions took place and when they happened. For example, after you *create a project from OSM*, if you access the log file, you are going to see something like the figure below, containing the sequence of steps followed to import the OSM network. If you wish to access this file later on, it is also possible to save this log file locally in your machine, using the **save to disk** button in the lower left corner of the log file box.

```
🔇 AequilibraE - Parameters
                                                                                                               *
    2023-05-11 13:46:00,994; WARNING ; About table already exists. Nothing was done
    2023-05-11 13:46:01,064;INFO ; Downloading data
    2023-05-11 13:46:01,135;DEBUG ; Downloading polygon 1 of 1
    2023-05-11 13:46:06,140;DEBUG ; Posting to http://overpass-api.de/api/interpreter with timeout=540, "{'data': '[
    2023-05-11 13:46:07,520;INFO ; Downloaded 426.4KB from overpass-api.de in 1.38 seconds
    2023-05-11 13:46:07,599;INFO ; Building Network
    2023-05-11 13:46:07,614;INFO ; Separating nodes and links
    2023-05-11 13:46:07,991;INFO ; Setting data structures for nodes
    2023-05-11 13:46:08,320;INFO ; Setting data structures for links
    2023-05-11 13:46:08,383;INFO ; Finalizing data structures
    2023-05-11 13:46:08,697;INFO ; Adding network nodes
    2023-05-11 13:46:09,590;INFO ; Adding network links
    2023-05-11 13:46:09,700; WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:09,716; WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:09,731;WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:09,747; WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:09,778; WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:09,794;WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:09,810; WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:09,857; WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:09,884; WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:09,904; WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:09,982; WARNING ; Link type has not yet been saved to the database. Do so explicitly
    2023-05-11 13:46:10,084;INFO ; Adding network links
     2023-05-11 13:46:20,364; INFO ; Network built successfully
                                                                                                            Þ
 Save to disk
                                                                                                        Close
```

2.1.5 Run procedures

The run procedures allows you to define model entry points and their default arguments, and run models to the model itself. Usage at QAequilibraE is pretty straightforward: select one of the available functions, click on the *Run!* button, and wait for the log file to open with the output results of the model.

To better understand the application of the run module, we encourage you to read about it at the AequilibraE documentation.

×
-

2.2 Model building

On the Model building tab, it is possible to effectively build an AequilibraE model, and to do so, there are some options, such as creating project from Open Street Maps or using your existing layers.

In this tab, you can also add centroids and zones to your project.

2.2.1 Create project from OSM

The first feature is the capability of importing networks directly from Open Street Maps into AequilibraE's efficient TranspoNet format. This is also time to give a HUGE shout out to Geoff Boeing, creator of the widely used Python package OSMNx. For several weeks I worked with Geoff in refactoring the entire OSMNx code base so I could include it as a submodule or dependency for AequilibraE, but its deep integration with GeoPandas and all the packages it depends on (Pandas, Shapely, Fiona, RTree, etc.), means that we would have to rebuild OSMNx from the ground up in order to use it with AequilibraE within QGIS, since its Windows distribution does not include all those dependencies.

For this reason, I have ported some of Geoff's code into AequilibraE (modifications were quite heavy, however), and was ultimately able to bring this feature to life.

Note

Importing networks from OSM is a rather slow process, so we recommend that you carefully choose the area you are downloading it for. We have also inserted small pauses between successive downloads to not put too much pressure on the OSM servers. So be patient!!

Importing networks from OSM can be done by choosing an area for download, defined as the current map canvas on QGIS...

... or for a named place.

2.2.2 Project from layers

The AequilibraE project can also be bootstrapped from existing line and node layers obtained from any other source, as long as they contain the following required field for the conversion:

- Link ID
- a_node
- b_node
- Link direction
- Length
- Speed
- Allowed modes
- Link Type

These requirements often create quite a bit of manual work, as most networks available do not have complete (or reliable) information. Manually editing the networks might be necessary, which is common practice in transport modelling.

Before creating a project from the layer, you can understand how to prepare the layers for this task on the page Preparing a network.

After all field preparation is done, one can import those layers into an AequilibraE project using a dedicated tool in the **Model building** menu in AequilibraE.

Accessing Model building > Create Project from Layers, the user is presented with the following screen.

INK	Klayer fields	NODE layer fields						
Lay	yer 🗸 🗸	SiouxFalls links						•
Layer field				Field	Source/Value	Source/Value		
1	fid			1	link_id		link_id	•
2	init_node			2	a_node		init_node	•
3	term_node			3	b_node		term_node	•
4	length			4	direction		direction	•
5	speed			5	distance		length	•
6	link_type			6	modes		modes	•
7	x1			7	link_type		link_type	•
8	y1			8	name	~		
9	x2			9	lanes_ab	✓		
10	у2		•	10	lanes_ba	✓		
11	direction			11	capacity_ab		capacity	•
12	modes			12	capacity_ba		capacity	•
13	link_id			13	speed_ab		speed	•
14	toll		23	14	speed_ba		speed	•
15	capacity			15	free_flow_time		free_flow_time	•
				16	power		power 🔻	
				17	Ь		b 💌	

The first 7 fields for links are mandatory, and one needs to associate the corresponding layer fields to the network fields.

The other fields that will be listed on the left side come from the parameters file (see the manual for that portion for more details), but the user can add more fields from the layer, as all of them are listed on the left side of the screen

In the case of the nodes layer, only two fields are mandatory.

Lá	SiouxFalls nodes				
	Layer field		Field	Initialize?	Source/Value
1	fid	1	node_id		id 👻
2	id	2	is_centroid		is_centroid 💌
3	x			I	
4	у				
5	is_centroid				
_	-				

After filling all fields, it is just a matter of saving it!

After running this tool a sqlite file (spatialite enabled) will be created and you can edit the network (create, move or delete links and nodes) and both layers (including node ID and A_Node/B_Node fields) will remain consistent with each other.

2.2.3 Network preparation

When preparing your project network, you might face there are two distinct situations:

- 1. User has only the network links: This is the case when one exports only links from a transportation package or downloads a link layer from Open Street Maps or a government open data portal and want to use such network for path computation. This tool then does the following:
 - Duplicates the pre-existing network in order to edit it without risk of data corruption
 - Creates nodes at the extremities of all links in the network (no duplicate nodes at the same latitude/longitude)
 - Adds the fields *a_node* and *b_node* to the new link layer, and populate them with the *IDs* generated for the nodes layer
- 2. User has the network links and nodes but no database field linking them: In case one has both the complete sets of nodes and links and nodes for a certain network (commercial packages would allow you to export them separately), you can use this tool to associate those links and nodes (if that information was not exported from the package). In that case, the steps would be the following:
 - Duplicates the pre-existing network in order to edit it without risk of data corruption
 - Checks if the nodes provided cover both extremities of all links from the layer provided. Node IDs are also checked for uniqueness
 - Adds the fields *a_node* and *b_node* to the new link layer, and populate them with the *IDs* chosen among the fields from the nodes layer

The *GUI* for these two processes can be accessed in the AequilibraE menu **Model Building > Network Preparation**, and it looks like this:

Q AequilibraE - Network Pr	reparation			×
Links layer				
Network Layer	links			-
Line layer name	net_links			
Nodes layer				
	 Create node layer 	\bigcirc Use node layer		
Node layer name	net_nodes			
Node numbering star	t 1001			
0%	.		Run!	Close

In this case we chose to add nodes with IDs starting in 1,001, as we will reserve all nodes from 1 to 1,000 for centroids, external stations and other special uses (we are not planning to use all that range and that is not necessary, but the numbering gets quite neat that way).

2.2.4 Adding centroids

Starting in version 0.6 of AequilibraE, centroid connectors can now only be added to AequilibraE projects, and no longer generates new layers during the process.

Before we describe what this tool can do for you, however, let's just remember that there is a virtually unlimited number of things that can go awfully wrong when we edit networks with automated procedures, and we highly recommend that you **BACKUP YOUR DATA** prior to running this procedure and that you inspect the results of this tool **CAREFULLY**.

The *GUI* for this procedure is fairly straightforward, as shown below.

Q AequilibraE - Add centroid co	onnectors	×
Centroids from		
Zone centers	O From network	k 🔷 Layer
Configurations		
✓ Limit connector creation	to zone	
Connectors per centroid		1 🗘
Allowed link types	м	1odes to connect
centroid_connector default	c n tr	bicycle car motorcycles transit trucks walk
	Add cone	ectors
Creating Connectors		0%

When creating centroids from zone centers, one can choose to limit the connector to the zone or not. Plase notice if one choose to limit the connector creation to a zone that has fewer nodes connected to links of the required types than the number of connectors will result in fewer connectors being created than desired.

One would notice that nowhere in the *GUI* one can indicate which modes they want to see the network connected for or how to control how many connectors per mode will be created. Although it could be implemented, such a solution would be convoluted and there is probably no good reason to do so.

Instead, we have chosen to develop the procedure with the following criteria:

- All modes will be connected to links where those modes are allowed.
- When considering number of connectors per centroid, there is no guarantee that each and every mode will have that number of connectors. If a particular mode is only available rather far from the centroid, it is likely that a single connector to that mode will be created for that centroid
- When considering the maximum length of connectors, the *GUI* returns to the user the list of centroids/modes that could not be connected.

Notice that in order to add centroids and their connectors to the network, we need to create the set of centroids we want to add to the network in a separate layer and to have a field that contains unique centroid IDs. These IDs also cannot

exist in the set of node IDs that are already part of the map.

2.2.5 Add zoning data

It is possible to import to AequilibraE project your own zoning system in case you already have one. Currently, AequilibraE only supports one projection system, which is the EPSG:4326 (WGS84), so make sure your zone layer is in this projection.

To add your zones to the active project, go to **Model building > Add zoning data**, select the zoning layer you want to add to the project, select weather you want to migrate the data and the respective layer field in the zoning layer, and finally click on process.

Q Ae	equilibraE - Add z	oning layer to proje	ect	×
Zor	ning layer	🗭 my_zon	ie_layer 👻	
	Select features	only 🗌 Add cer	ntroids at the center of mass	
	Migrate data	Zoning field	Layer field	
1	\checkmark	zone_id	id 💌	
2	\checkmark	area	area 💌	
3	\checkmark	name	name 🔻	
Г		Process		

2.3 Data

In the data tab the user can check and load the non-geographic data available in the project.

2.3.1 Visualize data

When clicking **Data > Visualize data**, a new window with three different tabs opens. The tab *matrices* shows the matrices available for the current project (see figure below).

Natrices Re	esults Non-proje	ct Data					
name	file_name	cores	procedure	procedure_id	timestamp	description	WARNINGS
demand_omx	demand.omx	1	None	None	2020-11-24	Original data	
demand_mc	demand_mc.o	3	None	None	2021-02-24	None	
skims	skims.omx	2	None	None	None	Example skim	
demand_aem	demand.aem	1	None	None	2020-11-24	Original data	

As for the tab *results* it displays the results of procedures that took place, such as the creation of Delaunay Lines, and that are saved in a **results_database.sqlite**.

Matrices Results No	on-project Data					
table_name	procedure	procedure_id	procedure_report	timestamp	description	WARNINGS
traffic_assignment_result	traffic	40e14805a9b	{'convergence':	2024-05-16		

The tab *non-project data* allows you to open and visualize matrices and datasets in the following extensions: *.omx and *.aem. **This is the only tab available if no AequilibraE project is open**. Suppose you want to check a skim matrix from a previous project. When clicking the **Load data** button, you can point AequilibraE the location of the file and its visualization is displayed.

Q Project da	ita			×
Matrices	Results	Non-project Data		
			Load Data	
			-	

Check the figure below to see how the visualization window looks like! General configurations for data displaying such as the number of decimal places and the usage of thousand separator are available. In case your file has more than one view, you can select the desired view using the dropdown buttons at the bottom of the page. In our figure, they are represented by the dropdowns containing *distance_blended* and *main_index*. To save your current matrix into *.csv format, just click in the *export* button in the lower left corner of the window.

0.0000 5.0000 8.0000 8.0000 0.0000 1.0000 6.0000	6.0000 0.0000 10.0000 14.0000 10.7709 5.0000	4.0000 10.0000 0.0000 4.0000 6.0000 11.5628	8.0000 14.0000 4.0000 0.0000 2.0000	10.0000 10.5183 6.0000 2.0000 0.0000	11.0000 5.0000 10.9835 6.0000 4.0000	16.000 10.000 17.963 12.980 10.980
2.0000 3.0000 0.0000 1.0000	10.0000 14.0000 10.7709 5.0000	0.0000 4.0000 6.0000	4.0000	6.0000 2.0000	10.9835	17.963
3.0000 .0.0000 1.0000	14.0000 10.7709 5.0000	4.0000	0.0000	2.0000	6.0000	12.980
0.0000	10.7709 5.0000	6.0000				
1.0000	5.0000		2.0000	0.0000	4.0000	10,980
		11.5628				
6.0000			6.0000	4.0000	0.0000	5.0000
	10.0000	17.6960	12.7035	10.7035	5.0000	0.0000
3.0000	7.0000	14.6960	9.7035	7.7035	2.0000	3.0000
5.0000	15.7709	11.0000	7.0000	5.0000	9.0000	13.000
8.0001	18.7710	14.0001	10.0001	8.0000	12.0000	9.0014
4.0000	20.0000	10.0000	6.0000	8.0000	12.0000	14.002
		1				•
housands sep	arator				Decima	I places 4
nce_blended			▼ main_inde	x		
o mapping	О В	y origin	⊖ By dest	ination	Blues	
.5 .4	5.0000 3.0001 4.0000 pusands sep ce_blended	5.0000 15.7709 3.0001 18.7710 3.0000 20.0000 busands separator ce_blended	5.0000 15.7709 11.0000 8.0001 18.7710 14.0001 9.0000 20.0000 10.0000 9.0000 20.0000 10.0000 9.0000 20.0000 10.0000 9.0000 8.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 10.0000 9.0000 9.0000 <td>5.0000 15.7709 11.0000 7.0000 3.0001 18.7710 14.0001 10.0001 3.0000 20.0000 10.0000 6.0000 4.0001 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 20.0000 9.0000 6.0000 20.0000 20.0000 9.0000 6.0000 20.0000 20.0000</td> <td>3.0000 15.7709 11.0000 7.0000 5.0000 3.0001 18.7710 14.0001 10.0001 8.0000 3.0000 20.0000 10.0000 6.0000 8.0000 wasands separator result in main_index mapping By origin By destination</td> <td>5.0000 15.7709 11.0000 7.0000 5.0000 9.0000 3.0001 18.7710 14.0001 10.0001 8.0000 12.0000 3.0000 20.0000 10.0000 6.0000 8.0000 12.0000 Dusands separator Decima main_index main_index</td>	5.0000 15.7709 11.0000 7.0000 3.0001 18.7710 14.0001 10.0001 3.0000 20.0000 10.0000 6.0000 4.0001 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 10.0000 6.0000 5.0000 20.0000 20.0000 9.0000 6.0000 20.0000 20.0000 9.0000 6.0000 20.0000 20.0000	3.0000 15.7709 11.0000 7.0000 5.0000 3.0001 18.7710 14.0001 10.0001 8.0000 3.0000 20.0000 10.0000 6.0000 8.0000 wasands separator result in main_index mapping By origin By destination	5.0000 15.7709 11.0000 7.0000 5.0000 9.0000 3.0001 18.7710 14.0001 10.0001 8.0000 12.0000 3.0000 20.0000 10.0000 6.0000 8.0000 12.0000 Dusands separator Decima main_index main_index

Additionally, we can visualize how the matrices look like in the map! Using the buttons *By origin* and *By destination*, it is possible to select the traffic zone by its origin or destination. If one select *By origin*, then click on the desired row, and notice that is going to be highlighted. The *zones* layer (if it exists) is going to be loaded and the corresponding zones are going to receive a different color shade, according to the color palette selected in the dropdown menu. One other possibility to select the zone for displaying is directly into the map canvas: with the *Select features* button enabled, just click on the desired zone in the layer and you'll notice that the color shades will change accordingly, as well as the row selection in the matrix.

The step-by-step when selecting *By destination*, is identical to the one before. Select the desired column (destination), notice that it will be highlighted, and the *zones* layer is going to present a color shade according to the color palette selected. The selection of zones for displaying is also available for destinations, and the steps are the same as presented above.

2.3.2 Importing matrices to project

It is also possible for the user to import matrices from an open layer to a project. This can be done by clicking **Data > Import Matrices** and properly indicating the fields in the new window. First click *Load* and then *Save*. A new window will open and you can point to the project matrices folder. To take a look in the matrix you just imported, you can upload the matrix table and display it as shown in the last topic.

		Matrix	SiouxFa	ls_od	*
		From	0		* *
		То	D		
		Flow	Ton		*
	LOAD	Save		Compress outputs	
	LOAD	Dimension		Compress outputs] [
1			s Total 360,600.00	Compress outputs	
-	Name	Dimension		Compress outputs	
-	Name	Dimensions 24 x 24	360,600.00	Compress outputs	

2.4 Trip Distribution

On the trip distribution tab, the user can perform Iterative Proportional Fitting (IPF) with their available matrices and vectors, as well as calibrate and apply a Synthetic Gravity Model.

In this page each option under the **Trip Distribution > Trip Distribution** is presented in one of the subsections below.

AequilibraE	6 🗙		
Pages,			
Read Balley,			
Contra-			
Trip Distribution Trip Distribution		Q AequilibraE Trip distribution	×
table and exegutions,	-		
Reality,			
Rdic Transat,		Iterative Proportional Fitting	
66,		Apply Gravity	
He I		Calibrate Gravity	

2.4.1 Iterative Proportional Fitting (IPF)

It is possible to balance the production/attraction vectors using IPF. There are three different ways to load a vector's data: loading a *.csv or *.parquet file or loading data from an open layer.

Let's click on the Iterative Proportional Fitting option to open the menu.

Loading the vector from a *.csv or *.parquet file is quite the same. Select your preferred option in the menu, and click *Load*, pointing to the location of the vector file in your machine.

🔇 AequilibraE - I	terative Proporti	onal Fitting			×
Load datasets	Load matrices	Vectors	Seed matrix	jobs	
Data sets Load		e # of AequilibraE CSV Parquet Import fror			
	Cancel	Load	Queue jo	bs	Run jobs

Case you are loading from an open layer, just click *Import from layer*, point the available data layer, and the name of its index column. You can choose between *Use data* or *Save and use*. Case you choose to save, the vector will be saved in a temporary QGIS folder.

Q AequilibraE - Vector lo	ader			×
⊖ csv	Data layer	synthe	tic_future_vector	•
 Parquet Import from layer 	Index field	index		•
Load	Use dat	а	Save and Use	

After the vector is properly loaded, it will appear in the Load datasets tab.

ad datasets	Load matrices	Vectors	Seed matrix	jobs	
		Dataset na	ame	# of field	S
	1 synthetic_futu	re_vector		2	
Data sets					
Load					

You can now select the production/attraction (origin/destination) vectors. If your data comes from a table/layer opened in QGIS, you'll notice that the *Index* collapsible list is deactivated because the data index was selected when loading the data.

🔇 AequilibraE - It	terative Proportio	nal Fitting				×
Load datasets	Load matrices	Vectors	Seed matrix	jobs		
Vector		synthetic	_future_vector			-
Index		index				•
Production		origins				•
Attraction		destinatio	ons			•
	Cancel		Queue jo	bs	Run jobs	

And select the impedance matrix to be used.

🔇 Aequilibr	raE - Iterative Proport	ional Fitting			×
Load datas	ets Load matrices	Vectors	Seed matrix	jobs	
Matrix	demand_aem			-	
Core	matrix			•	
	Cancel		Queue jo	bs	Run jobs

To run the procedure, simply queue the job (and select the where the output file will be saved). Then, you will notice that a job with the output file name will appear in the jobs table with a status *queued* (2). Finally, press *Run jobs* (3).

🔇 Aequilibra	E - Iterative Proport	ional Fitting		×
Load dataset	s Load matrices	Vectors Seed matrix	x jobs	_
Job		Output name	Status	
1 1	ipf_vector		Queued	
Treat-m		2		
Treat em	oties as zeros			
	Cancel	Queue	e jobs Run jobs	5

After the job is completed, a new window showing its procedure report will open.

Q AequilibraE - Procedure report X							
##### IPF computation	#####						
Target convergence criteria: Maximum iterations: 5000	0.0001						
Rows:24 Columns: 24 Total of seed matrix: Total of target vectors:	360,600.0000 436,740.0000						
Iteration, Convergence 6 , 0.0000451038							
Running time: 0.007s							
	Close]		Save log			

We can close it after checking the procedure report.

Important

Production and Attraction vectors **must be** balanced before running IPF.

2.4.2 Synthetic Gravity Models

Calibrate Gravity

Now that we have the demand model and a fully converged skim, we can calibrate a synthetic gravity model.

We click on Trip distribution in the AequilibraE menu and select the Calibrate Gravity model option.

The first thing to do is to check if all matrices we need (skim and demand) are in the project folder.

Lo	ad matrices Imp	edance	Observe	d matrix	Model	jobs	
	1		2		3	4	
1	demand_omx	demand	.omx	1		None	None
2	demand_mc	demand_mc.omx		3 N		None	None
3	skims	skims.omx		2		None	None
4	demand_aem	demand	.aem	1		None	None
5	imped_matrix	imped_n	natrix.omx	2		Network skimming	4013
6	traffic_assignme	traffic_a	assignme	4		Traffic Assignmer	nt 1bd1
4							•

Select which matrix/matrix core is to be used as the impedance matrix.

🔇 Aequilibra	aE - Calibrate gravi	ty model		×
Load matrice	es Impedance	Observed matrix	Model jobs	
Matrix	skims		•	
Core	free_flow_time_c_	final	•	5
	Cancel		Queue jobs	Run jobs

And which one corresponds to the *observed* matrix.

🔇 Aequilibr	aE - Calibrate gravit	ty model			×
Load matric	es Impedance	Observed matrix	Model	jobs	
Matrix	demand		•]	
Core	matrix		•)	
					ß
	Cancel		Queue jobs	s	Run jobs

We then select which deterrence function we want to use (1) and choose a file output for the model by clicking on *Queue jobs* (2).

In the jobs tab, we can check all jobs we queued (1) and then run the procedure (2).

Aequilibra	AequilibraE - Calibrate gravity model					
Load matrice	es Impeda	once Observed m	atrix Model	jobs		
Job		Output na	me		Status	
1 1	mod_expone	ntial_negative			Queued	
Treat em	npties as zero:	5				
	Cance		Queue jo	bs	Run jobs	-(

Inspect the procedure output.
Q AequilibraE - Procedure report	×
##### GRAVITY CALIBRATION #####	
Functional form: EXPO	
Iteration: 1 ##### GRAVITY APPLICATION #####	
Model specification: Function: EXPO	
beta: 0.03320240801967285	
Target convergence criteria: 0.0001 Maximum iterations: 100	
Rows/columns: 24 Total of seed matrix: 13,616.7613	
Total of target vectors: 13,616.7613	
Iteration, Convergence	
3 , 0.0000075175	
Running time: 0.008s	
Total of matrix: 13,616.7613	
Intrazonal flow: 1,160.3799 Running time: 0.03	
Iteration: 2	
##### GRAVITY APPLICATION #####	
Model specification:	
Function: EXPO beta: 0.02067329752109662	
Target convergence criteria: 0.0001	
Maximum iterations: 100	
Rows/columns: 24	
Total of seed matrix: 13,616.7613 Total of target vectors: 13,616.7613	
Iteration, Convergence	
2 , 0.0000324526	 v
Close	Save log
CIUSC	Save iog

The resulting file is of type *.mod, but that is just a YAML (text file).

mod_exponential_negative.mod	× +	—		×
Arquivo Editar Exibir		* ∌ ∨	8	ŝ
SyntheticGravityModel: alpha: null beta: 0.02067329752109662 function: EXPO				

Apply Gravity

If one has future matrix vectors (there are some provided with the example dataset), they can either apply the Iterative Proportional Fitting (IPF) procedure available, or apply a gravity model just calibrated. Here we present the latter.

With the menu open, let's load the dataset(s) with the production/origin and attraction/destination vectors. We can add data into the model by loading a *.csv or *.parquet file or through an open-layer, just like the IPF procedure above.

AequilibraE - , Load datasets	Apply gravity mod	del Vectors	Impedance	Model	jobs)
	Dataset name	# 0	ffields			
Data sets Load	1	 CSV Parqu 	ilibraE 2 net 2 rt from layer Load	×		
	Cancel		Queue j	obs	Run	jobs

We select the production/attraction (origin/destination) vectors.

🔇 AequilibraE -	Apply gravity mo	odel	×
Load datasets	Load matrices	Vectors Impedance Model jobs	
Vector		synthetic_future_vector	
Index		index -	
Production		origins	
Attraction		destinations	
			_
	Cancel	Queue jobs Run jobs	

And the impedance matrix to be used. We can select one matrix core to use in computation.

🔇 Aequilibra	aE - Ap	ply gravity mo	del			>
Load datase	ets	Load matrices	Vectors	Impedance	Model	jobs
Matrix	skims				•	
Core	free_	flow_time_c_fina	ıl		•	
						\square
		Cancel		Queue ja	obs	Run jobs

The last input is the gravity model itself, which can be done by loading a model that has been previously calibrated, or by selecting the deterrence function from the drop-down menu and typing the corresponding parameter values.

🔇 AequilibraE	Apply gravity mod	lel			×
Load datasets	Load matrices	Vectors	Impedance	Model jobs	
	Parameter	-	Value		
	1 Function	GAMM	A -		
	2 Alpha	0,000	0000 🇘		
	3 Beta	0,000	0000 🇘		
Model		[
	Cancel		Queue j	obs	Run jobs

As we already have a calibrated model, we'll load its configurations. When clicking *Load* (1) a new window opens. Point to the path where your *.mod file is stored, and once its done, you'll notice that the parameters in the table view now correspond to the model data (2). Queue the jobs by hitting the *Queue jobs* button (3).

Load datasets	Load matrices	Vectors	Impeda	ance	Model	jobs	
	Parameter		Value				
	1 Function	EXPO		-			
	2 Beta	0,020	6733	-			
Model Load			2				

It is possible to check all jobs quued before running the model in the tab *Jobs* (1). If all jobs look ok, just click on the *Run jobs* button (2).

oad data	sets	Load matric	es \	Vectors	Impedance	Model	jobs	
Job			0	utput nar	ne		Status	
1 1	fut	ure_demand					Queued	
				(
				•				

Once the process is finished, a new window with the procedure report output will open. You can check its results and then close it.

Q AequilibraE - Procedure report	×
##### GRAVITY APPLICATION #####	
Model specification: Function: EXPO beta: 0.0206733	
Target convergence criteria: 0.0001 Maximum iterations: 100	
Rows/columns: 24Total of seed matrix:436,740.0000Total of target vectors:436,740.0000	
Iteration, Convergence 2 , 0.0000511408	
Running time: 0.008s	
Total of matrix: 436,740.0000 Intrazonal flow: 36,592.6714 Running time: 0.031	
Close	Save log

The result of this matrix can also be assigned, which is what we will generate the outputs being used in the scenario comparison.

2.5 Paths and Assignment

From version 0.6, AequilibraE plugin does not require the user to create the graph to perform path computation as in previous versions. In this version, as you set up your own configurations, the software already computes the graph for you.

AequilibraE	(K) (S)
Project,	
Robeltadory,	
Cells.	
Try Dehrlinden,	
Paths and assignment.	Shortest path
Reiding,	Impedance matrix
Refer Transport,	Skim viewer
48.	Traffic Assignment
This .	Route choice

2.5.1 Shortest Path

The first thing we can do with this project is to compute a few arbitrary paths to see if the network is connected and if paths make sense.

Before computing a path, we go to the configuration screen.

Q Shortest path	×
Configure	1
From	
То	
Compute	
Selection	
• Path in new new layer	

For the case of Sioux Falls, we need to configure the graph to accept paths going through centroids (all nodes are centroids), but that is generally not the case. For zones with a single connector per zone it is slightly faster to also deselect this option, but use this carefully.

🔇 AequilibraE - 🤇	Graph and Network se	tting X
Mode	car (c)	
Minimize	distance	2
3 Do paths th	rough centroids	
Remove sel	ected links from the	graph
	Done!	4

If we select that paths need to be in a separate layer, then every time you compute a path, a new layer with a copy of the links in that path will be created and formatted in a noticeable way. You can also select to have links selected in the layer, but only one path can be shown at time if you do so.

2.5.2 Impedance Matrix (aka Skimming Matrix)

We can also skim the network to look into general connectivity of the network.

To perform skimming, we can select to compute a matrix from all nodes to all nodes, or from centroids to centroids, as well as to not allow flows through centroids.

The main controls, however, are the mode to skim, the field we should minimize when computing shortest paths and the fields we should skim when computing those paths.

	ode <i>car (c)</i>		Minimize field distance	
D	ALL nodes to ALL nodes	4	Bock paths through centroids	
•	entroids to centroids		Remove selected links from the graph	
M	5			
	Available skims		Compute skims	_
1	lanes		1 free_flow_time	
2	capacity			
3	speed	6		
4	ь		3	
5	power	\checkmark	1 👩	
5	toll			
7	alpha			
в	beta			
9	distance 5			
S.				-

With the results computed (AEM or OMX), one can display them on the screen, loading the data using the *non-project data tab* in **Data > Visualize data**.

2.5.3 Skim viewer

The skim viewer makes it easier to view skimming results. The skim viewer window looks like this:

Q Skim viewer						\times
Layer						
Selected layer Start ID	Nodes	•		Color	Blues 🔻	
Graph						
Mode	car (c)	•	Minimize field	lanes	-	
ALL nodesCentroids t	to ALL nodes to centroids		✓ Block path	is through centroids		
Skims						
Available Skim	IS		lanes		*]
		F	Plot!			

In the *Layer* group, you can select between the nodes or zones layers for data viewing. You can also select a color map range for plotting and the starting node/zone ID.

In the *Graph* group, you can set the graph configurations, such as the mode, the minimizing (cost) field, the choice to block or allow flows through the centroids, and whether to compute skims for all nodes or between centroids. Another useful feature of the skim viewer is that it allows users to use joined fields from the 'links' layer as minimizing or skimming fields.

Finally, in the Skim group, you select the desired skimming field for plotting.

When visualizing the skims, you'll notice that a memory layer named 'skim_viewer' is created. It contains the node or zone ID for joining the nodes or zones layer and a data column that holds the data to be plotted. Whenever the selected node or zone changes, the values in the data column also change.

Skim view without joined layer

For demonstration purposes, we'll use the Coquimbo model for this example. You can go directly to the skim viewer and set the configuration, as presented below:

Q Skim viewer		×
Layer		
Selected layer Nodes	•	Color Blues 👻
Start ID 15		
Graph		
Mode car (c)	✓ Minimize field	distance
3 LL nodes to ALL nodes	Block paths	s through centroids
Centroids to centroids		
Skims		
Available Skims	distance	
	Plot!	5

The output in the map canvas is:

If you select any other node with the skim viewer window open in the background, you will notice that the image displayed in the map canvas automatically changes.

If you want to change either the minimizing field or skimming field (or both), you can modify your selection directly in the skim viewer window, and it will be automatically recomputed for display in the map canvas.

Skim viewer with joined layer

For this example, we'll use the Sioux Falls model. First, join the 'links' layer with the desired results table (see *Visualize data* for more information). Then, go to the skim viewer. When you see the window for the first time, you won't notice anything different, but when you click on the minimize field and available skims, you'll notice that the joined fields also appear here.

Q Skim view	/er	×
Layer		
Selected la	ayer Zones	Color Blues 👻
Start ID	5	2
Graph		
Mode	car (c)	Minimize field traffic_assignment_result_congested_t
O ALL no	des to ALL nodes	4 lock paths through centroids
Centro	ids to centroids	
Skims		
Available S	Skims	traffic_assignment_result_congested_time
		Plot! 6

Let's plot the zones for Sioux Falls, starting at zone ID 5, and using *traffic_assignment_result_congested_time* for both the costs and skimming fields. The initial configuration looks like this:

The output in the map canvas will be:

If your zone layer is active and you select another zone with the skim viewer window open in the background, you'll notice that the image in the map canvas automatically changes.

If you want to change either the minimizing field or skimming field (or both), you can modify your selection directly in the skim viewer window, and it will be automatically recomputed for display in the map canvas.

2.5.4 Traffic assignment

Having verified that the network seems to be in order, one can proceed to perform traffic assignment, since we have a demand matrix.

The Traffic Assignment procedure tab looks like this!

Aequilib	raE - Traffic As	ssignm	ent toolbox				2
Project	Traffic Cla	sses	Skimming	Critical analysis	Link flow extraction	Assignment	45
F	Property			Va	alue		
1 Project	path	D:/re	lease/Sample n	nodels/sioux_falls_202	20_02_15/SiouxFalls.sqlite		
2 Modes		car (o	c)				_
							1

In the *Traffic Classes* tab you will create the traffic classes used in the project. First, select one of the available matrices (in *.AEM or *.OMX format), and the matrix core that will be used for computation. For the Sioux Falls example, we don't want to block flow through centroids, but this is only necessary because regular nodes of the network are centroids. When you finish, just press the *Add Traffic class to assignment* button.

AequilibraE - T	raffic Assignme	ent toolbox							
Project Tra	ffic Classes	Skimming	Critical analysis	Link flow extraction	Assignment				
Toject		Create traff	-	LINK NOW EXCLUSION	Assignment	Traffic classes			
Aatrix name	demand			Class name	Mode	User classes	Fixed cost	PCE	rem
matrix_cor				1 car	car (c)	1		1.0	Rem
matrix	360,600.0								
Network Mod	le	car (c)	•						
Assignment	class name	car							
Passenger V	ehicle Equival	ent 1,0000	•						
Block flov	vs through ce	ntroids							
Remove s	elected links	from the grap	h						
Include fi	xed cost	lanes	-						
Value of Tim	e	1,00000	*						

To select skims, we need to choose which fields/modes we will skim

AequilibraE ·	- Traffic Assignme	ent toolbox					
roject T	raffic Classes	Skimming	Critical analysis	Link flow extraction	Assignment		
Field to ski	im distance		•	Mode car (c)		•	Add skim
	Mode		Field		Last iteration		Blended
car (c)		free_	flow_time	\checkmark		V	

And if we want the skim for the last iteration (like we would for time) or if we want it averaged out for all iterations (properly averaged, that is).

Project Tr	affic Classes	Skimming	Critical analysis	Link flow extraction	Assignment		2
Field to skir	m distance		•	Mode car (c)		•	Add skim
	Mode		Field	Li	ast iteration		Blended
1 car (c)		free_	flow_time	\checkmark			
2 car (c)		dista	nce			✓	
car (c)		dista	nce			V	
2 car (c)		dista	nce			V	
2 car (c)		dista	nce			V	
2 car (c)		dista	nce			V	

Next, we can choose to run a select link analysis. Its default configuration is not to select any links, so we have to toggle its *"Set select link analysis"* button.

ject Traffic Classes S	kimming Critical analysis	Assignment			
Set select link analysis					
uery name	query_name		Links	Query name	
rection	AB				
nk ID	12345				
Add to query Sa	ve query	Clear			
utputs					
output_name					
✓ Save select link matrices	s 🗸 Save select link	results			

The creation of queries for analysis consists in: create a name for the query, select the travel direction, add the link ID, and click on *Add to query*, to temporarily save the data to the query.

	leaving node 1	Links	Query name
uery name			
rection	AB 3		
nk ID	1 4		
Add to query 5 Sa	ave query Clear		
utputs			
output_name			
✓ Save select link matrice	s Save select link results		

Adding more links to the previous query is straightforward. Select the direction and the link ID, and press *Add to query* once again.

Set select link analysis Query name leaving node 1 Direction AB Link ID 2 Add to query 3 Save query Clear Outputs output_name ✓ Save select link matrices ✓ Save select link results	name leaving node 1 AB 1 2 2 2 d to query 3 Save query Clear s nut_name	oject Traffic Classes	Skimming Critical analysis	Assignment			
Query name leaving node 1 Direction AB Link ID 2 Add to query 3 Save query Clear Dutputs	name leaving node 1 AB 1 2 2 2 d to query 3 Save query Clear s put_name	Set select link analysis					
Direction AB 1 ink ID 2 2 2 Add to query 3 Save query Clear Dutputs output_name	on AB 1 2 2 d to query 3 Save query Clear s put_name	Query name	leaving node 1		Links	Query name	
Add to query 3 Save query Clear Dutputs output_name	d to query 3 Save query Clear s			1			
Dutputs Output_name	s nut_name	.ink ID	2	2			
Dutputs Output_name	s nut_name	Add to query 3	Save query C	lear			
		Dutputs					
✓ Save select link matrices ✓ Save select link results	ave select link matrices Save select link results	output_name					
		✓ Save select link matric	ces 🗸 Save select link re	esults			

When we are done with the current query, we click on *Save query*, and notice that the query with the selected links is going to appear in the right-hand side table.

AequilibraE - Traffic Assignment toolbox				
Project Traffic Classes Skimming	Critical analysis Assignment			
/ Set select link analysis				
Query name	leaving node 1	Links	Query name leaving node 1	
Direction Link ID	AB •			
Add to query Save query				
Outputs				
output_name ✓ Save select link matrices	▼ Save select link results			

To finish the select link analysis step, we choose one name to save one or both of the matrix and results files.

	Traffic Classes	Skimming	Critical analysis	Assignment			
Set se	elect link analysis						
			lassing gods :		Links	Query name	
uery r			leaving node :	L	1 [(1, 1), (2, 1)]	leaving node 1	
irectio	n		AB	*			
ink ID			2				
Ado	d to query	Save query		Clear			
utputs							
_							
	ct_link_analysis						
✓ Si	ave select link matri	ces	Save select link	results			

The final step is to setup the assignment itself.

Here we select the fields for:

- link capacity
- link free flow travel time
- BPR's alpha
- BPR's beta

We also confirm the Relative gap and maximum number of iterations we want, the assignment algorithm and the output folder. In this case, we again choose to not block flows through centroids for the reason discussed above.

oject	Traffic Classes	Skimming	Critical analysis	Link flow e	extractio	on Assignr	nent				
gorithm					Vol	ume-Delay fu	nction				
bfw				-	F	unction			bpr	•	
						Parameter	Value		Field		
Relative	Gap 0.0001	M	aximum Iterations	250	1	alpha		b	*		
					2	beta	3	power	*		
etwork i	nformation				_		h			1	
Capacity	<i>,</i>	capacity		*							
Free Flo	ow Travel time	free_flow_time	e	Ŧ							
utputs											
Result_	name										
	e complete path f										

The result of the traffic assignment we just performed is stored in the results.sqlite database within the project folder. It can be easily accessed and loaded by clicking **Data > Visualize data**, and a project data window will open. Just click on the *Results* tab, select the desired result, let the *Join with layer* option checked, and click in the *Load Result table as data layer* button at the bottom. The result table layer will be automatically joined with the links layer.

Project data						
Matrices Results No	n-project Data					
table_name	procedure	procedure_id	procedure_report	timestamp	description	WARNINGS
traffic_assignment_result	traffic	40e14805a9b	{'convergence':	2024-05-16		
Join with layer						
		Load R	esult table as data lay	or		
		Load N				

Now we can revisit the instructions for Stacked Bandwidth

2.5.5 Route choice

With the route choice sub-module, it is possible to create choice sets with three different algorithms as well as assign trips to the network using the traditional path-size logit. Using this module in QAequilibraE is trivial

In the tab "Route choice model", we add the model configuration. It consists of three different boxes. In the first box "*Choice set generation*", we input parameters for the choice set construction. In the "*Route choice model*", we add the parameters for the route choice model, such as the utility function and the path overlap parameter (PSL/beta) value. Finally, in "*Graph configuration*" we set up the graph used for computation.

AequilibraE - Route	Choice					
Route choice model	Critical analysis	Workload				
Choice set generation	on					
Algorithm	BFSLE			Penalty	1.00	
Max. routes	1			Max. depth	0	
Probability cutoff	0.00]		
Route choice model						
Parameter			Netwo	rk field		
0.10			speed	1		 Add to utility function
Utility function						
						Clear utility function
		PSL (beta)	1.00			
Graph configuration						
Network Mode				car (c)		•
✓ Block flows thr	ough centroids					
Remove select	ed links from the graph					

In the tab "Critical analysis", we can select to run either a set of select link analysis or a sub-area analysis. These analyses cannot be run at the same time in QAequilibraE. If you choose to run a sub-area analysis, all OD pairs with demand are considered for computation. To select only a few pairs of interest, we encourage you to take a look at Route choice with sub-area analysis at AequilibraE's Python documentation and run this task outside QGIS.

oute choice model	Critical analysis	Workload		
elect link analysis			Sub-area analysis	
Set select link ar	nalysis		Set sub-area analysis	
Query name	query_nam	ne	Zoning layer	Ŧ
Direction	AB		Selected features only	
Link ID	12345			
Add to query	Save qu	ery Clear		
Select link outputs				
select_link_outpu	t_name			
Links	Query name			

Lastly, the tab "Workload" allows users to choose between three tasks. The first box, "*Execute single*" consists of computing route choices between two different nodes and visualizing it, while the second box "*Matrix*" allows the selection of a travel demand matrix to be assigned using the route choice specified. This option also allows the user to save choice sets to disk while performing route choice.

AequilibraE for QGIS

AequilibraE - Route Choice		>
Route choice model Critical analysis	Workload	
Execute single		
Origin node ID 12345	Destination node ID 98765	Visualize
Demand 1.0		
Matrix		
demand	▼ Use all	
Save route choice set results	Build choice sets only	Perform assignment
route_choice_output_name		

We can run different workflows with the route choice sub-model. We'll briefly present them.

Basic route choice

In this example, we'll perform route choice for the Coquimbo example model for a single OD pair. As this example model does not ship with a demand matrix, we can manually create an open layer and use its data to import the matrix to the project, as shown in *Importing matrices to project*.

AequilibraE - Route	Choice				
Route choice mode	Critical analysis	Workload			
Choice set generati	on				
Algorithm	BFSLE		1 Penalty	1.00	
Max. routes	5		2 Max. depth	0	
Probability cutoff	0.00				
Route choice model					
Parameter			Network field		5
0.011			3 distance		4 Add to utility function
Utility function			-		-
0.011 * distance		6			Clear utility function
		PSL (be	eta) 1.00		
Graph configuration					
Network Mode			car (c)		7
Bock flows the	rough centroids				
Remove select	ted links from the gra	ph			

We start by setting the route choice parameters. In the "Choice set generation" box, we select the algorithm to be one of Link Penalization (LP), Breadth-First Link Search on Link Elimination (BFSLE), or BFSLE with LP, choose the values for probability cutoff and penalty, and choose a positive value for one of maximum number of routes (LP) or search depth (BFSLE and BFSLE + LP).

In the box "Route choice model" box, we configure our utility function. In this example, it is a function of distance, but could be any other numeric field, such as travel time or tolls. We then add the parameters to the utility function and it will appear in the utility function box. We can change the utility function by cleaning it and adding it one more time. To add more parameters to the utility function, just change the values and click in "Add to utility function" one more time.

Regarding "Graph configuration", we'll use the network for cars and allow flows through centroids.

We can now move directly to the "Workload", select origin and destination nodes and click on the visualize button.

Route choice mo	del Critical analysis	Workload	
xecute single			
Origin node ID	77011	Destination node ID 74089	2 Visualize 4
Demand	1.0	3	
latrix			
demand		▼ Use all	
Save route	choice set results	Build choice sets only	Perform assignment
route_choice_d	utput_name		

A new window named Execute Single will appear, loading the configuration we just used for the route choice set. If we are done with the choice set generation, we can close it, otherwise, we can generate the route choice set for another OD pair, also setting the desired number of routes.

Q AequilibraE - Execute single ×	Q AequilibraE - Execute single ×
Origin node ID77011Destination node ID74089	Origin node ID71645Destination node ID79385
Max. routes	Max. routes

After a few seconds, the output visualization for the routes is shown in the map canvas and we can close the Execute Single window. The figure below presents the route choice sets, in which the line width corresponds to the probability of choosing each link.

Build choice sets

Within this workflow, we can build and save the choice sets without performing assignment. We start by *configuring the model parameters*, then go to the "Workload" tab and select our demand matrix and its cores for computation.

Route choice model	ritical analysis Work	load	
xecute single			
Origin node ID 12345		Destination node ID 98765	Visualize
Demand 1.0			
latrix			
demand	1	se all	
Matrix	Use?	2	
1 demand			
		3	
Save route choice s	et results	Build choice sets only 4	Perform assignment
output			

If you want to use all cores for computation, just let the "Use all" checkbox untoggled after choosing the matrix. Otherwise a table with the matrix cores and if they should be used is opened and we can select the cores we want.

Then all we need to do is hit the "Build choice sets only". Once the task is finished, our route choice window will automatically close. If you go to the project folder, you will notice that a folder named '*route choice*' containing folders with the choice sets for each centroid (index) in the matrix was created.

It should be noted that, although we are not performing assignment in this workflow, we use demand matrices to determine the OD pairs for which choice sets are needed, which are all of those with positive demand.

Perform assignment

This workflow runs a route choice assignment and allows the user to save the choice set generated while performing such. The set up is quite similar to the one above: After *setting the model parameters up*, we go straight to the "Workload" tab and select the demand matrix and its cores for computation.

In this example, we choose to also save the choice sets generated, by toggling the "Save route choice set results" button. If we leave this button untoggled, only link flows are saved into the results database.

We also choose a name for saving the results in the database. Pick up a name that you can easily find later. Then, just hit the button "Perform assignment" and wait until the window is closed and the process is finished.

oute choice mo	del Critical analysis	Workload	
xecute single			
Origin node ID	12345	Destination node ID 98765	Visualize
Demand	1.0		
latrix		•	
demand			
ave route	choice set results		Perform assignment 5
▼ gave route	choice set results	1 Vise all	Perform assignment 5
✓ gave route 3	choice set results	1 Vise all	Perform assignment 5
3 ave route utput	choice set results with_assignment	1 Vise all	Perform assignment 5
3 ave route utput		1 Vise all	
3 ave route utput		1 Vise all	
3 ave route utput		1 Vise all	
3 ave route autput		1 Vise all	
3 ave route utput		1 Vise all	
3 ave route autput		1 Vise all	

Select link analysis

The left portion of the "Critical analysis" tab gives the user access to select link analysis. Its interface is quite similar to the one in Traffic Assignment, in which we can add and remove queries with selected links, and save both the matrix and the results in the databse.

We start by toggling the "Set select link analysis" checkbox and enabling the following menus.

Let's add our first query. Create a name, set the link direction, add the link ID, and click on "Add to query".

oute choice model	Critical analysis	Workload		
elect link analysis			Sub-area analysis	
et select link a	nalysis		Set sub-area analysis	5
Query name	sl1	1	Zoning layer	
Direction	AB	2		Selected features only
Link ID	7369	3		
Add to query	Save que	ery Clear		
Select link outputs				
select_link_outpu	t name			
	-			
12.1	Query	name		
Links				

Let's add another link to our *SL1* query. Let's set the link direction and link ID, add to the existing query with "Add to query", and click on "Save query" (4). The *SL1* query will immediately appear in the table at the bottom of the window (5).

Route choice model	Critical analysis	Workload		
elect link analysis			Sub-area analysis	
✓ Set select link analy	ysis		Set sub-area anal	lysis
Query name	sl1		Zoning layer	•
Direction	AB	1		Selected features only
Link ID	20983	2		
Add to query	3 Save que	ry Clear		
Select link outputs		4		
select_link_output_n	ame			
	lume]		
Links		ry name		
1 [[(7369, 1), (20983,	, 1)]] sl1			
	5			

Just to make this example more interesting, let's create an *SL2* query. We repeat the process of creating a query name, setting the direction, selecting link ID, adding and saving the query. It will also appear at the bottom table (6). To remove any query from the query table, we can double-click the cell. Once this is our last query, we pick up a nice name to save our select link analysis results (7).

oute choice model Critical a	100	rkload			
elect link analysis			Sub-area analysis		
✓ Set select link analysis			Set sub-area ana	alysis	
Query name sl	2	1	Zoning layer		~
Direction A	В	2		Selected features only	
Link ID 73	369	3			
Add to query	Save query	Clear			
	h	e.ea.			
- 4	Save query 5				
Select link outputs					
- 4					
Select link outputs select_link_analysis_with_a	ssignment				
Select link outputs select_link_analysis_with_a					
Select link outputs Select_link_analysis_with_a Links 1 [[(7369, 1), (20983, 1)]]	ssignment Query nam				
Select link outputs select_link_analysis_with_a	ssignment				
4 Select link outputs select_link_analysis_with_a Links 1 [[(7369, 1), (20983, 1)]] 2 [[(7369, 1)]]	ssignment Query nam sl1 sl2				
4 Select link outputs select_link_analysis_with_a Links 1 [[(7369, 1), (20983, 1)]] 2 [[(7369, 1)]]	ssignment				
4 Select link outputs select_link_analysis_with_a Links 1 [[(7369, 1), (20983, 1)]] 2 [[(7369, 1)]]	ssignment Query nam sl1 sl2				

The last step consists in selecting the matrix and its cores for computation, and perform the assignment. It's not necessary to add a name to the route choice output, once we did it in the previous step.

Route choice model	Critical analysis	Workload		
xecute single				
Origin node ID 12	345	D	estination node ID 98765	Visualize
Demand 1.0)			
latrix				
demand		1	2 ✓ Use all	
Save route cho	ice set results		Build choice sets only	Perform assignment 3
output				
route_choice_outp	ut_name			
	ut_name			
	put_name			
	out_name			
	put_name			
Dutput	put_name			

Sub-area analysis

To perform a sub-area analysis, we start by toggling the "Set sub-area analysis" checkbox, which enables us to choose a polygon layer that defines the sub-area of interest. In this example, we select a couple zones in Coquimbo, and toggle the checkbox "Selected features only". We could also use an external polygon layer with the desired region and use all the layer features rather than a part of it.

Finally, select all cores of our demand matrix for computation, don't forget to add a name for the output file, and hit the "Perform assignment" button. When the process is finished, the window is closed. If you go to the project folder, you will notice that a folder named *'route choice'* containing a .parquet file with the same output name you selected in (3) containing the sub-area demand matrix.
AequilibraE - Route Cho	ice		
Route choice model	Critical analysis	Workload	
xecute single			
Origin node ID 12345	ō	Destination node ID 98765	Visualize
Demand 1.0			
latrix			
demand		2 Use all	
Save route choice	set results	Build choice sets only	Perform assignment
-	ith accignment		
utput sub_area_analysis_w	ith_assignment		3
-	rith_assignment		
Output sub_area_analysis_w	vith_assignment		

Tip

Try to reproduce AequilibraE's Route Choice examples in QGIS!

2.6 Routing

AequilibraE's routing allows the user to run a Travelling Salesman Problem (TSP), using a selected set of nodes or the centroids of a network.

AequilibraE	Ð	
Rep. 1		
Sec. 1	ing.	
See,		
Tip Dark	án,	
Patronalis	adgement,	
Routing.	Travelling Salesman Problem	
Adv. No.	ee.	
889 C		
144 C		

Its usage is straightforward. For Sioux Falls, for example, we would select the centroids of the network, and minimize the distance travelled by car. It is also possible to choose the start node of our TSP (we'll let node_id 1 to be the starting node, but it could be any available node), and indicate we want to see the result in a new layer.

Our prompt box would look like this:

Q Travelling Salesman Problem	×
Nodes	
○ Selected	
Project	
Mode car (c) Minimize distance	
Block flows through centroids	
Starting node 1	
Results	
○ In a selection	

When AequilibraE is done solving the TSP, it provides a procedure report, like the one in the figure below. You can export the procedure report in a .txt file if you wish, by clicking on the lower right button in the window. Otherwise, you can just close this window (the TSP sequence can be found in the TSP stops layer).

Q AequilibraE - Procedure report			×
Objective function value: 0.0 Route: 1.0 -> 24.0 -> 23.0 -> 22.0 -> 21.0 -> 20.0 -> 19.0 -> 18.0 -> 17.0 -> 10 > 3.0 -> 2.0 -> 1.0	5.0 -> 15.0 -> 14.0 -> 13	.0 -> 12.0 -> 11.0 -> 10.0 -	> 9.0 -> 8.0 -> 7.0 -> 6.0 -> 5.0 -> 4.0
Close		Sa	ave log

And as we chose to display the result in a new layer, it would look like the figure below. Please note that the TSP stops are labeled according their sequence.

Note

TSP is a well-known optimization problem and it has already been implemented in several different software and programming languages. However, the main problem related to TSP is related to its size (hence its complexity). This means that as we increase the number of stops we want to travel to, the software will take much longer to provide you with an answer, and in some cases, it might also crash.

2.7 Public Transport

QAequilibraE is capable of importing a General Transit Feed Specification (GTFS) feed into its public transport database.

More details on the public_transport.sqlite are discussed on a per-table basis in AequilibraE's documentation, and

we recommend understanding the role of each table before setting an AequilibraE model you intend to use. If you don't know much about GTFS, we strongly encourage you to take a look at the documentation provided by Mobility Data.

2.7.1 Import GTFS

To import a GTFS feed, click **Public transport > Import GTFS**. A new window with the importer will open. If it is the first time you are creating a GTFS feed for your project, it may take a little while to create the public transport database in the project folder, and your QGIS screen might not be responsive until the database is created in the project folder. In the GTFS importer window, you can click on *Add Feed* and point to the location in your machine where the GTFS data is.

GTFS Importer)
Add Feed	
Feeds to import	
Allow map-match	
Add transit table	
Create new route system	
Execute Importer	
Execute Importer	

Once the feed is loaded, you can select the service date, the agency name, and write a description for it. It is also possible to add and/or modify the route capacities. When you're done, just click on **Add to importer** and you will return to the GTFS importer screen.

Notice that the feed information is now available at the *Feeds to import* table view. The first time you create a GTFS feed, the only option available is **Create new route system**, so you don't have to click on it. If you want to map-match the existing transit routes, you can select **Allow map-match**. Then, you can import your GTFS feed to your project by clicking on **Execute Importer**.

A window with a progress bar will open and once it is finished, you can check out the GTFS feed data you just imported in your project folder.

Basic settings	Rout	e capac	ities						Bas	ic settings	Route capacities]		
	rtout	o capac								le octango				
	Θ			abril	2015			•	Rou	ite capacities	;			
		dom	seg	ter	qua	qui	sex	sáb		Route Type	Seated	Design	Total	
	14	29	30	31	1	2	3	4			150	300	1000	
Service date	15	5	6	7	8	9	10	11	1 0		150	300		
	16	12	13	14	15	16	17	18	2 1		280	560		
	17	19	20	21	22	23	24	25						-
	18	26	27	28	29	30	1	2	3 2		700	700		
	19	3	4	5	6	7	8	9	4 3		30	60		
Agency*	agency	/_name							5 4		400	800		
Description*	agency	/ descri	ption											T T
														-
												+		
				mporter	_							importer		

	Add Feed	
	Feeds to import	
1 agency_na	ne (gtfs_coquimbo)	
Allow map	-match	
Add transit ta	ble	
Create ne	w route system	

In case you want to add or rewrite information on your public transport database, you can click on **Public Transport > Import GTFS**. You will notice a difference in the clickable buttons at the bottom of the page, and it is now possible to **Overwrite routes** or **Add to Existing Routes**. For any of these options, you follow the same steps previously presented to add feed data and load it into the project.

	Add Feed	
Feeds to	import	
Allow map-match		
Resetting Transit Tab	les	

2.7.2 Transit skimming and assignment

QAequilibraE incorporates two of AequilibraE's transit features: skimming and assignment. In this section, we'll replicate AequilibraE's Python examples and show you how to add a new Period to your transit model. To open the menu, click on **Public Transport > Skimming and Assignment**.

The Transit skimming and assignment module consists in four different tabs. "*Periods*" is the first tab and it displays a visualization of the periods in the project. It also has a clickable button for you to add a custom period as desired. Notice that, a period representing all day-long (period_id == 1) exists by default.

eriod	Trans	it Graph	Skimm	ing Transit A	ssignment	
					Add new period	
peri	od_id	period	d_start	period_end	period_description	
L		0		86400	Default time period,	

The second tab is *"Transit Graph"*, in which you will add the configuration of the graph that will be created. The four checkboxes at the top of the tab indicate some characteristics of the network and you can select all that apply. The three drop-down buttons configure, respectively, the connector method (which creates the connector edges between each stops and ODs), the line geometry method (which creates a LineString for each edge), and the match graph for mode. The last checkbox indicates weather you want to save the assignment result in the database or not.

Use existing graph			
Outer stops transfers		Inner stops transfers	
✓ Walking edges		✓ Block centroid flows	
Connector method	Overlapping regions		•
Line geometry method	Direct		•
Match graph for mode	car (c)		•
✓ Save transit graph to data	base		

In the "*Skimming*" tab it is possible to select the fields we want to create skims for, perform the actual skimming, and save the result as an *.OMX file.

erio	od Transit Graph Skimm	ing Transit Assignment	
	Available skims	Compute skims	
1	boardings		
2	alightings	•	
3	inner_transfers	4	
4	outer_transfers		
5	transfers	•	
atr	rix_name		
		0%	Perfom skimming

Finally, in the "*Transit Assignment*" tab, we select the demand matrix and its core that will be set for computation, the name of the assignment class, the fields corrresponding to the travel time and frequency, and the name we want to save the results table.

Period Transit Gra	aph Skimming Tra	nsit Assignment	
Matrix	demand	▼ Matrix core	pt 👻
Assignment class n	ame		
etwork information			
Travel Time	trav_time	 Frequency 	trav_time •
utputs			
result_name			
	09	6	Perform assignment

In the next sub-sections, we'll present two different workflows, one performing skimming with a custom period and the other performing assignment for the period of one day.

Skimming with custom period

In this example we'll create a custom period and its related skimming. We start at the tab "*Periods*" clicking on the *Add new period* button.

	it Graph Skimr	ning Transit A	ssignment	
			Add new period	
period_id	period_start	period_end	period_description	
1	0	86400	Default time period,	

A new window containing the fields period start, end, and description will open. Add the appropriate time and description and hit the *Add period* button at the bottom.

🔇 AequilibraE	- Add new period	>
Period start	06:45:00	.
Period end	10:15:00	\$
Description	Custom period, from 6:45AM to 10:15A	м
	Add Period	1

The window will close and the period will be automatically shown in the Periods table view. By default, the periods are numbered in an ascending order based on the number of the last period added. Notice that the start/end periods we added before are displayed as seconds at the table. Before continuing, select the desired period by clicking on it, otherwise an error will be thrown when skimming/assigning.

eriod	Transi	t Graph	Skimm	ing	Transit As	ssignment			
					ŀ	Add new pe	riod		
peri	od_id	period	_start	ре	riod_end	period	_description		
		0		8640	0	Default tir	ne period, who		
2		24300		3690	0	Custom p	eriod, from	-	

At the tab "*Transit Graph*", we'll set up the configurations of the graph. For this example, we'll uncheck the boxes for "walking edges", and "block centroid flows". For the purpose of this example, we'll let the box "save transit graph to database" checked so we can reuse the graph for assignment. Let's change the value of line geometry method to "connector project match" because graphs should be created using this method. Finally, as Coquimbo doesn't have many walking edges, we'll match the graph for cars.

Use existing graph		
Outer stops transfers	Inner stops transfers	
Valking edges	lock centroid flows	
Connector method	Overlapping regions	•
Line geometry method	Connector project match	C
Match graph for mode	car (c)	-
✓ Save transit graph to data	Dase	

Moving to the "*Skimming*" tab, we can select the skims we want to compute, as well as select a name to our matrices file. To add a skim to computation, we select the fields one by one at the "Available skims" column and add them to the "Compute skims" column by clicking on the right-arrow button (see steps 1, 2, and 3). Let's create a name for our output (step 4) and click on the *Perform skimming* button. It will perform the skimming for a unit matrix, and store the result at the project matrices' folder.

erio	od Transit Graph Skimm	ming Transit Assignment			
	Available skims	-		Compute skims	
1	inner_transfers		1	1 boardings	
2	outer_transfers	2,	2	2 alightings	
3	transfers	•	3	3 waiting_time	
4	trav_time				
5	on_board_tra	-			
kim	_from_645_to_1015				(
		0%		Perfom skimming	7

When the process is finished, the PT Skimming and Assignment window will automatically close and you can check the outputs at the matrices folder.

Transit assignment

In this example, we'll perform the assignment for all day-long also for Coquimbo. This is a reproduction of an AequilibraE's example.

Let's start the example selecting the default period at the periods table.

	it Graph Skimm	ning Transit A	signment	
			Add new period	
period_id	period_start	period_end	period_description	
	0	86400	Default time period,	_

Instead of setting up the graph configurations again, you can reuse the graph currently in memory. To do this, select the "Use existing graph" checkbox. The lower section of the "*Transit Graph*" tab will then be disabled. If you change your mind, simply clear the checkbox and configure the graph settings as needed.

Jse existing graph			
Outer stops transfers		Inner stops transfers	
✔ Walking edges		✓ Block centroid flows	
Connector method	Overlapping regions		Ŧ
Line geometry method	Direct		Ŧ
Match graph for mode	car (c)		Ŧ
✔ Save transit graph to data	base		

As we're running an assignment, we'll skip the Skimming tab and move directly to "*Transit Assignment*". Let's select a demand matrix and its core for computation (steps 1 and 2). As Coquimbo doesn't have any matrix in its matrices folder, you'll have to create one open layer and *import it to the project*. Then, select an appropriate name for the transit assignment class (setp 3), and the variables that corresponds to the travel time and frequency (steps 4 and 5). Lastly, select an appropriate name for the output that will be stored in the results database (step 6) and just hit the *Perform Assignment* button at the bottom.

Period Transit G	raph Skimmin	g Transit Assignment	
Matrix	demand	Matrix core	pt S
Assignment class	name	pt_class	3
Network information	n	4	
Travel Time	trav_		freq
Dutputs			
pt_assignment_r	esult		6
		0%	Perform assignment

2.7.3 Explore transit network

Case you have already imported a GTFS feed into your project or you want to open a feed from an AequilibraE project created with Python, you can click on **Public Transport > Explore Transit** to visualize the Transit routes. While opening the Transit Navigator, you will notice that the layers *patterns, routes, stops* and *zones* from the GTFS file are going to be displayed in your map canva, and appear in the layers list.

The navigator window has five different tabs you can explore.

route_id	route	pattern	id	stop_i] [d	stop		stop_name	-
20001000000	101387	200010010		20000002		890882		turo Godoy, 6	1
20001000000	101387	200010030	000	20000002	61 1	890884	Du	ıbl Almeyda, 2	
				20000002	66 1	896466	La	s Heras,	1
				20000002	67 1	896467	Fr	eire, 604	
				20000002	68 1	896468	Alı	mirante	
				20000002	69 1	896470	Alı	mirante	
			MINOR	RESET					_
Global filtering									
	Agency	Liserco							Ŧ
	GTFS type	Bus							-
RESET									
	Time Window	From	06:00	÷	To 08	:00			
Sample				Ŧ		• 00) No	rth/East Patter	'n
	100,0 🗘 %	From All direct 		Ŧ		:00) No	rth/East Patter	'n
Supply Mappin	100,0 🗘 % ng Stops		tions	Ŧ		• 00			'n
	100,0 🗘 %			Ŧ		• 00	No		ms •
Supply Mappin	100,0 🗘 % ng Stops		tions	Sou	ith/West	t patterns			The second se
Supply Mappin No mapping Show labels	100,0 🗘 % ng Stops Map	All direct	tions	Sou	ith/West	t patterns		25	The second se
Supply Mappin No mapping Show labels	100,0 🗘 % ng Stops Map Scale	All direct	tions	Sou	ith/West	patterns		25	
Supply Mappin No mapping Show labels Supply Mappin	100,0 🗘 % ng Stops Map Scale ng routes and patte	All direct	tions	Sol	routes	patterns	Blue	es Map!	•
Supply Mappin No mapping Show labels Supply Mappin No mapping	100,0 🗘 % ng Stops Map Scale ng routes and patter Map Scale	All direct	tions	Sol	routes	patterns	Blue	es Map! Blues	•
Supply Mappin No mapping Show labels Supply Mappin No mapping Show labels	100,0 🗘 % ng Stops Map Scale ng routes and patter Map Scale	All direct	tions	Sol	routes	patterns	Blue	es Map! Blues	•

In the top, there are the three boxes one can select and filter routes, patterns, and stops. You will notice that whenever an element is selected or filtered, this selection is automatically displayed in the map canva. After filtering data, if you want to restore the original layers, you can click on **Minor reset**, and your layers are restored.

In the *Global filtering* tab, it is possible to filter your GTFS by *Agency*, *GTFS type*, *Time window*, and *directions*. It is also possible to select a sample from the GTFS data to analyze. The fitering performed in this tab is automatically

displayed in the map canva. To restore the original layers, just click on Reset.

In the last three tabs, one can display useful information about stops, routes, patterns, and zones. For instance, you can find out *how many routes stop at a specific stop location, what is the total capacity of a specific route*, or *which zones have more stops or routes across them.* Within these tabs, it is possible to configure how one wants to display the information, by selecting the object color, or thickness (size). It is also possible to display labels, by selecting the **Show labels** option. The figures below show the number of routes across the stops displaying the information with different symbol colors and sizes. Notice that in the layers list, the variable scale for number of routes is shown, as well as a data layer named *stops_metrics*, which contains the available metrics for the existing stops.

2.8 GIS Tools

QAequilibraE has some tools to allow the user to visualize the data.

2.8.1 Desire Lines

QAequilibraE is capable of doing two types of desire lines.

It is possible to use a zone or a node layer, and one can also generate the desire lines and Delaunay lines for the demand matrix provided.

Q Aequilibrae - Desire Lines toolbox	N		×
Zone or Node layer	Matrix	Use?	
nodes •	1 matrix	✓	
ID Field			
node_id 💌			
Matrix			
demand_aem Use all			
Method			
O Desire Lines			
○ Urquhart Lines ○ Minimum Spanning lines			
Create Desire Lines Cancel and Exit			

After selecting a matrix, the user can choose to un-check the *use all matrices* box and select which matrix layers/cores they want to use (the list of matrices will only show if the option is un-checked). Just make sure to select a *zone/node layer* and *node id* that is compatible with your matrix.

The user also needs to choose if they want Delaunay lines

or desire lines

2.8.2 Stacked Bandwidth

The tool for plotting link flows you just saw above can be found under the GIS menu.

You can select a link layer, including Delaunay Lines or desire lines. It is also possible to choose between solid or gradient colors.

🔇 AequilibraE - Stacked Bandwid	ith and color ramps		×
Line layer			
AB Flow	BA Flow	• Solid color O	Color ramp
1.2 flows_matrix_ab	• 1.2 flows_matrix_ba •		Add band
AB flow	BA Flow	Color	Move/delete
	Create bands		

🔇 AequilibraE - Stacked Bandwidt	h and color ramps	×
Line layer V ^{°°} links		▼.
AB Flow	BA Flow	Solid color Color ramp
1.2 flows_matrix_ab	1.2 flows_matrix_ba	Add band
AB flow	BA Flow	Color Move/delete
1 flows_matrix_ab	flows_matrix_ba	x
	Create bands	

You can also control the overall look of these bands (thickness and separation between AB and BA flows) in the project properties.

roject <u>E</u> dit <u>V</u> iew <u>L</u> aye	r <u>S</u> ettings <u>P</u> lugins Ve	ect <u>o</u> r <u>R</u> aster <u>D</u> atabase
<u>N</u> ew	Ctrl+N	🔍 🛐 🤤
New from Template)	
<u>— О</u> реп	Ctrl+O	🕞 Vi 🔭 🛛
Open From	1	+
Open <u>R</u> ecent)	+
Close		ð
Save	Ctrl+S	
🔜 Save <u>A</u> s	Ctrl+Shift+S	4
Save To	,	•
Revert		
<u>P</u> roperties	Ctr Shift+P	
Snapping Options	- 0	•
Import/Export)	0
🚡 New <u>P</u> rint Layout	Ctrl+P	
🝓 New <u>R</u> eport		
🔌 Layout Manager		
Layouts)	
Exit QGIS	Ctrl+Q	0

え *Untitled Project − QGIS

ect Properties Variables		
Ex	pression Variables	
neral	Variable	Value
	Global	Voice
tadata	▼ Project	
	project_abstract	и 11
S		'square meters'
	project_area_units project_author	'Pedro Camargo'
ault Styles	project_basename	"
	project_creation_date	<datetime: 15:17:50="" 2020-02-27=""></datetime:>
a Sources	project_creation_date	'EPSG:4326'
ations	project_crs_definition	'+proj=longlat +datum=WGS84 +no_defs'
ations	project_distance_units	'meters'
riables		WGS84'
lables	project_ellipsoid	W0304
cros	project_filename	n and a second
cius	project_folder	н.
IS Server	project_home	н. Н
o octroct	project_identifier	
	project_keywords	0
	project_path	н. Н
	project_title	
	aeq_band_max_value	23194.797337
	aeq_band_spacer	0.1
	aeq_band_width	10
		'10'
		'10'
		'10'
		.10.
		'10'
		.10.
		.10.
		.10.
		·10·
		·10·

And have our map!! (You need to refresh or pan the map for it to redraw after changing the project variables)

2.8.3 Scenario Comparison

After joining the two assignment results (the original one and the one resulting from the forecast we just did) to the links layer, one can compare scenarios.

When joining the assignment results, make sure to name them in a way you will understand.

The scenario configuration requires the user to set AB/BA flows for the two sets of link flows being compared, as well as the space between AB/BA flows, and band width.

The user can also select to show a composite flow comparison, where common flows are also shown on top of the positive and negative differences, which gives a proper sense of how significative the differences are when compared to the base flows.

As it was the case for stacked bandwidth formatting, expert mode sets project variables as levers to change the map formatting.

🔇 AequilibraE - Scenario Com	parison		×
Line layer			
V [∞] links			•
Base case	Alterr	native	
AB Flow	AB	Flow	
1.2 base_matrix_ab	· 1.	² future_gravity_ab	•
BA Flow	BA	Flow	
1.2 base_matrix_ba	• 1.	² future_gravity_ba	•
Formats			
Space between bands	Maximum band w		only
0.00			
		 Expert mode 	N
Colors			63
Positive differences	Negative difference	ces Common flow	
	Create comparis	on	

And this is what it looks like

2.8.4 Simple tag

GIS > Simple tag works as a spatial join tool in AequilibraE that allows you to join useful information between layers.

Suppose you have a nodes layer with a 'name' column only with NULL values, and a zoning layer with an analogous column 'name' but filled with actual names. We can join the information from the zoning layer into the nodes layer using Simple tag.

We start selecting the layer and the field from which we want to import the data, and then selecting the layer and the field we want to 'paste' the data. Notice that depending on the operation one want to perform, not all methods are available.

🔇 AequilibraE - S	imple TAG	×
Data source		
Layer	zones	•
Data field	name	•
Data destination		
Layer	nodes_layer	•
Data field	long_name	•
Matching criteria		
Fields need to	have matching values	
Geographic relation		
O Enclosed	O Touching	
Waiting for inputs		
	0%	ОК

Be aware that the existence of triggers in the project database might affect the performance of Simple tag.

CHAPTER

THREE

PROCESSING TOOLS

Some of AequilibraE's plugin functionalities are also available in a processing plugin. The processing plugin is automatically installed with QAequilibraE and allows you to perform several tasks, such as creating project from links, exporting matrices, and much more, as a batch process. To use the processing plugin, you don't have to directly open the AequilibraE project, nor have the widget open, although it is mandatory to have AequilibraE installed.

To find AequilibraE's processing plugin, click on the **Processing** panel and select **Toolbox**. You can also use the available QGIS shortcut to open the Toolbox window.

At the bottom of the window, you'll find the AequilibraE logo and the available functions. The functions are divided into groups, following the same logic as the AequilibraE widget menu. Notice that not all AequilibraE functionalities are available for processing, and not all processing tools exist at the main AequilibraE menu.

In the following subsections, we'll go over all functionalities.

3.1 Model Building

3.1.1 Add centroid connectors

AequilibraE's processing tool can add centroid connectors to a project's network. All you need to do is specify the number of centroids and the project folder. You can also choose the modes and the link types you want to connect, otherwise the default configuration uses all modes and link types.

Parameters Log	 Add centroid connectors
Industry and the second	Adds centroid connectors for one or all modes.
0%	Cancel

3.1.2 Add links from layer to project

This tool allows you to add links from a vector layer to your existing project network. The fields usage is straightforward: in *Project path*, you add the project's path in your machine, then select a vector layer that corresponds to the new links you want to add to your project, and indicate the layer fields that correspond to the link type, direction, and modes. Notice that this tool doesn't require a node layer, nor does it require fields such as a_node or b_node, as it will use the existing numbering in the project.

Parameters Log			s from laye	r to
Project path		project		
		Adds links from project	a layer to an existir	ng AequilibraE
links	J			
Direction	• • • •			
	-			
Link type				
	•			
Modes	-			
				Cancel

3.1.3 Add/Renumber nodes from layer

You can also add or renumber nodes in an AequilibraE project to match a layer of centroids. Just select or import the centroids layer, specify the node ID you want to match, and the output folder.

Parameters Log		enumber nodes from
Project path	layer	
Centroids	Adds or renu to match a la	umbers nodes in an AequilibraE projec ayer of centroids.
	WARNING: y node_id (ex.	/ou may have to change existing using QGIS field calculator)
lode ID	to ensure the Zone ID) are	at changed node IDs (coming from not already used.

3.1.4 Create project from link layer

Create project from link layer is similar to the widget menu *Create project from layers*, and allows you to create an AequilibraE project directly from a link layer, without requiring a node layer. With a geometric layer loaded into QGIS, select it in the *Links* button, and add the required data in the subsequent menus. Choose the project's name and specify the location where you want to save it on your machine.

Parameters Log		Create project from link
Links		layer
	•	Creates an AequilibraE project from a given link layer
Link ID		
Direction		
Link type		
	•	
Modes		
Output folder		
[Save to temporary folder]		
0%		Cancel
0%		Cancel

3.1.5 Create project from OSM

This tool is similar to the homonymous widget menu *Create project from OSM*, and allows you to create an AequilibraE project only specifying the place name and the folder path and name you want to save the project.

1. Model Building - Create Project From OSM		
Parameters Log	¹ Create proje	ct from OSM
lace name	Creates an AequilibraE OpenStreetMap	project from
utput folder		
Save to temporary folder]		
0%		Cancel

3.1.6 Run procedures

This tool is similar to the widget menu *Run procedures*, and allows you to use defined entry points and arguments, and run models to the model itself. To use this tool, just select one of the available functions, and once the algorithm is finished, go to the log file to check the outputs.

Important

An open AequilibraE project is required for this tool to work.

👌 1. Model B	uilding - Run Procedures					>
Parameters	Log		4	Run proce	dures	
Available funct	vailable functions			Run entire model pipelines from AequilibraE		
example_func	ction_with_kwargs		•			
		0%				Cancel
Advanced *	Run as Batch Process				Run	Close

3.2 Data

3.2.1 Create AequilibraE Matrix from layer

With *Import matrices*, you can save an open data layer directly as a *.aem file. This tool is analogous to the widget menu *Importing matrices to project*, but it does not require an open AequilibraE project to work. To use the tool, you must have an open layer loaded in QGIS, and the menus are the ones presented in the figure below.
Parameters Log		te AequilibraE matrix
Matrix Layer	Saves lay	layer yer as a new *.aem file. Notice that: jinal matrix stored in the layer needs to be
Destination	✓ in list for - origin a	
/alue Matrix core		
matrix_core Advanced Parameters		
Matrix name [optional] Matrix description [optional]		
File path [Save to temporary file]		
0	b	Cancel

The upper fields are mandatory and are responsible for selecting the layer, indicating which columns correspond to the origin, destination, and flow, creating a core name for your matrix, and specifying the output file name and path. In the *Advanced Parameters*, you can add extra information about your AequilibraE matrix using the fields Matrix name and Matrix description.

3.2.2 Export matrices

The *Export matrices* tool is analogous to the *Export* button in the matrix viewer (see: *this figure* for more details). Its usage is straightforward: select the matrix you want to export, specify the path on your machine to store the file, and select its output format. Only *.aem and *.omx files can be used as input, and the output format can be either one of *.aem, *.omx, or *.csv.

Parameters Log	4	Export matrices
Matrix path		Exports an existing *.omx or *.aem matrix file in *.csv, *.aem or *.omx
File path		
-ile format		
.CSV	•	

3.2.3 Matrix calculator

Under the hood, this tool performs several matrix calculations using NumPy. Its output is an AequilibraE matrix stored in the file path you provide. Notice that not all matrices operations available in NumPy are also available here. We currently handle the following operations.

- +, -, *, /
- min, max, abs
- ln, exp, power
- null_diag, T

To be more effective in your calculation, please use the brackets to separate the operations in the desired order of execution.

2. Data - Matrix Calculator Parameters Log Configuration file (*.yaml)		Matrix calculator	×
Expression	c e N c n v v	Kulls a matrix factorized of a matrix configuration file (*, yaml) and an expression.Results are stored in an Aequilibi Matrix.Please notice that:- each key in the configuration file corresponds to the name o matrix in the input expression;- expression r written according to NumPy syntax.Example valid expressions and configuration are prov the plugin documentation.	of the must be is of
matrix_core			
File path [Save to temporary file]			
0%		Car	ncel
Advanced * Run as Batch Process		Run Clo	se

The following code blocks present, respectively, examples of a matrix input configuration for the YAML file and an expression that can be used for calculation.

Listing 0: Matrix configuration

```
# For each matrix used for calculation
- matrix_name1:
    matrix_path: path to file
    matrix_core: specifiy the core name
```

Listing 1: Expression

(matrix_name1 - matrix_name2).T

3.2.4 Save matrix from layer in existing file

This tools allows you to export the data from an open layer to an existing *.omx file.

Important

Currently, we cannot add new cores to an existing AequilibraE matrix. For this reason the only output file format available is *.omx.

Parameters Log	Save matrix from layer	in
Matrix Layer	existing file	
	 Saves a layer to an existing *.omx file. N that: 	lotice
Origin	- the original matrix stored in the layer ne	eeds to l
Destination		
	origin and destination fields need to be value field can be either integer or real	
Value	- if matrix_core already exists, it will be u	
Matrix core	➡ and previous data will be lost	
matrix_core		
File path		
[Save to temporary file]		
0%		Cancel

3.2.5 Trip length distribution

This tool generates a Trip Length Distribution (TLD) plot for a pair of demand and skim matrices and their selected cores.

Important

An open AequilibraE project is required for this tool to work.

🔇 2. Data - Trip Length Distribution	
Parameters Log	¹ Trip length distribution
Demand matrix	Creates a trip-length distribution histogram and
demand.aem 💌	, save in an output folder.
Demand matrix core	
matrix	
Skim matrix	
trafficassignment_dp_x_car_omx	·
Skim matrix core	_
distance_blended	
File path File path	
0%	Cancel
Advanced 👻 Run as Batch Process	Run Close

3.3 Paths and assignment

3.3.1 Traffic assignment from file

AequilibraE traffic assignment can now be performed using a YAML file that contains the model input information. The process is straightforward: create a valid YAML file with your project path, required matrices, and valid parameters, and load it into AequilibraE.

Parameters Log	Traffic assignment from	m file
Configuration file (*.yaml)	Runs traffic assignment using a YAML co file. Example of valid configuration is provide plugin documentation.	nfigurat

The code block below contains an example of a valid YAML configuration.

Listing 2: Traffic assignment configuration

```
project: path_to_project
result_name: test_from_yaml
traffic_classes:
    - car:
        matrix_path: path_to_project/matrices/demand.aem
        matrix_core: matrix
        network_mode: c
        pce: 1
        blocked_centroid_flows: True
        skims: free_flow_time, distance
assignment:
    algorithm: bfw
    vdf: BPR2
    alpha: 0.15
    beta: 4.0
    capacity_field: capacity
    time_field: free_flow_time
    max_iter: 10
    rgap: 0.001
```

(continues on next page)

(continued from previous page)

```
select_links: # optional, name with a list of lists as [[link_id, link_direction]]
        - from_node_1: [[1, 1], [2, 1]]
        - random_nodes: [[3, 1], [5, 1]]
```

3.4 Public Transport

3.4.1 Create transit graph

Benefiting from new AequilibraE features, this processing tool allows you to create and save a transit graph to use in the transit assignment. Figure below presents an screenshot of the create transit graph processing interface.

Parameters Log	Create transit graph	
roject path	Creates a transit graph	
eriod ID		
1	•	
1odes		
✔ Block flows through centroids		
Project with walking edges		
Project with outer stops transfers		
Project has zoning information		

Notice that you will have to input data such as the project path, the desired mode, and the period ID for which you want to create your graph. Other graph configuration, such as Block flows through centroids and Project with walking edges are boolean, and can be selected as necessary. You can read more about these configuration here.

Note

Currently only a single transit graph can be saved and reloaded.

3.4.2 Create GTFS

This tool allows you to import a GTFS feed to your project. Just point to the GTFS zip and project paths in your machine, select the date for which you want to import the transit routes, and if you want to map-match the routes or not. Remember that depending on the GTFS size, the map-matching procedure can be really time-consuming. Unlike the GTFS importer in the widget menu, to use this processing tool you must know which calendar date you are going to use.

🞗 4. Public Transport - Import GTFS			
Parameters Log	 Import	GTFS	
Project path	Adds transit r AequilibraE pr	outes from a GTFS roject.	to an existing
GTFS file			
Transit agency			
Date to import (YYYY-MM-DD)			
1980-01-01			
Map-match transit routes			
0%			Cancel
Advanced * Run as Batch Process		Run	Close

Tip

Mobility Data is a non-profit organization that provides a GTFS validator tool. If you want to use QAequilibraE processing processing provider tool to import a GTFS feed, you can load your GTFS file at their validator and it will provide you useful information, including calendar date ranges.

3.4.3 Transit assignment from file

Transit assignment from file is quite similar to the traffic assignment presented above, with the remarkable differences related to the transit graph and assignment, as shown in AequilibraE. The YAML file setup includes the project location in your machine, as well as information on matrix and assignment. To use this tool, you must have a transit graph, either created by the processing tool above or using AequilibraE code.

🝳 4. Public Transport - Transit Assignment From File			×
Parameters Log	4	Transit assignment	from file
Configuration file (*.yaml)		Runs transit assignment using a YA configuration file.	AML
		Example of valid configuration is propulation plugin documentation.	rovided in the
		pagnadunenadun	
0%			Cancel
Advanced * Run as Batch Process		Run	Close

The code block below contains an example of a valid YAML configuration.

Listing 3: Transit assignment configuration

```
project_path: path_to_project
result_name: transit_from_yaml
matrix_path: path_to_project/matrices/demand.aem
matrix_core: workers
assignment:
    time_field: trav_time
    frequency: freq
    algorithm: os
graph:
    period_id: 1
    with_outer_stop_transfers: False
    with_walking_edges: False
    blocking_centroid_flows: False
    connector_method: overlapping_regions
```

3.5 Network

3.5.1 Collapse links

This tool allows you to collapse one or more links into nodes, adjusting the network in the neighborhood if necessary.

The input for the tool consists in a folder containing an AequilibraE project and a the link IDs of the links you want to collapse separated by a comma.

🔇 5. Network - Collapse Links			×
Parameters Log	4	Collapse links	٦
AequilibraE Project Folder		This tool collapses links into nodes, adjusting the	
(*		network in the neighborhood.	
Link IDs (comma-separated)			
903,900			
			_
0%		Cancel	
Advanced * Run as Batch Process		Run Close	5

3.5.2 Network simplifier

This tool allows you to simplify the network, merging short links into larger ones or turning links into nodes, and save these changes into the project.

The input for the tool consists in a folder containing an AequilibraE project.

Q 5. Network - Network Simplifier	×
Parameters Log Network s AequilibraE Project Folder This tool simplifies into longer ones or	simplifier the network, merging short links or nodes, and saving theses
0%	Cancel
Advanced * Run as Batch Process	Run Close

APPENDIX

CONTRIBUTING TO AEQUILIBRAE FOR QGIS

This page presents some initial instructions on how to setup your system to start contributing to QAequilibraE and lists the requirements for all pull-requests to be merged into main.

A.1 Software Design and requirements

QAequilibraE is built on top of AequilibraE's main features, and the most important piece of AequilibraE's backend is, without a doubt, NumPy.

The user might not see or know, but whenever vectorization is not possible through the use of NumPy functions, compiled code written in Cython is developed in order to accelerate computation.

QAequilibraE also observes a strong requirement of only using libraries that are available in the Python installation used by QGIS on Windows.

We have not yet found an ideal source of recommendations for developing QAequilibraE, but a good initial take can be found in this article.

Please notice that QAequilibraE installation MUST WORK at least in the most recent long-term release (LTR).

A.2 Development Install

We recommend using a dedicated virtual environment to develop QAequilibraE, using the version of Python related to the most recent QGIS long-term release. When this section was updated (November/2024), LTR 3.34.12 was coming with a default 3.12.7 Python environment.

We also assume you are using one of PyCharm or VSCode, which are good IDEs for Python. If you are using a different IDE, we would welcome if you could contribute with instructions to set that up.

(For us,) The easiest way of developing a QGIS plugin is using a Docker container to build an image containing a QGIS installation. When cloning QAequilibraE repository into your local machine you will find a Dockerfile with this recipe.

```
git clone https://github.com/AequilibraE/qaequilibrae.git
```

Then all you have to do is create a virtual environment, and proceed with the requirements' installation. We understood that the creation of a virtual development environment within a container would be redundant, however after facing some developing issues related to PEP 668, we believe that using a virtual environment would be a good practice.

```
python3 -m venv .venv --system-site-package
. .venv/bin/activate
python3 -m pip install - U pip setuptools uv
python3 -m pip install -r test/requirements_test.txt
```

(continues on next page)

(continued from previous page)

```
python3 ./ci/dependency_installation.py
export PYTHONPATH=$(pwd)/qaequilibrae/packages:$PYTHONPATH
export QT_QPA_PLATFORM=offscreen
```

A.3 Development Guidelines

QAequilibraE development (tries) to follow a few standards. A huge effort is being undertaken by the development team to update several portions of the code are still not up to such standards.

A.3.1 Style

- Python code should follow (mostly) the pycodestyle style guide.
- Python docstrings should follow the reStructuredText Docstring Format.
- We are big fans of auto-code formatting. For that, we use Black.
- Negating some of what we have said so far, we use maximum line length of 120 characters.

A.3.2 Imports

- Imports should be one per line.
- Imports should be grouped into standard library, third-party, and intra-library imports.
- Imports of NumPy should follow the following convention:

import numpy as np

A.3.3 Translatable Strings

If you are adding or modifying any piece of QAequilibraE's code that includes translatable strings, which are the strings displayed in the widget windows, please ensure you use the tr function to locate the strings. This will guarantee that the strings are included in our future translations. Currently, only classes that have a self method support the localization of strings.

```
# Indicates that the message "You need at least three centroids to route. " will be
# set for translation.
qgis.utils.iface.messageBar().pushMessage(self.tr("You need at least three centroids to_
oroute. "), "", level=3)
# In case you have to insert any text into a string, the best way is to use string format
self.error = self.tr("ID {} is non unique in your selected field").format(str(id))
```

Strings in QAequilibraE Processing Provider can also be translated. To indicate the strings, import the translation function and configure it to return the context and the message.

```
from qaequilibrae.i18n.translate import trlt

class YourClassHere():
    ...
    # YourClassHere functions
    ...
    def processAlgorithm(self, parameters, context, model_feedback):
```

(continues on next page)

(continued from previous page)

```
...
feedback.pushInfo(self.tr("Running assignment")) # indicates the translatable_
→string
...
def tr(self, message):
   return trlt("TrafficAssignYAML", message)
```

As for November 2024, QAequilibraE's translations are all hosted in Transifex. Currently, we are targeting translations in Brazilian Portuguese, Chinese, French, German, Italian, and Spanish. If you want to contribute to QAequilibraE by translating the plugin to other languages or reviewing the existing translations, please let us know in our AequilibraE Google Group, so we can add your language to our translation pool!

In the *plugin internationalization* page, you can find more information on creating your account and start translating QAequilibraE.

A.3.4 Contributing to AequilibraE for QGIS

GitHub has a nice visual explanation on how collaboration is done GitHub Flow. (For us,) The most important points there are:

- The main branch contains the latest working/release version of QAequilibraE
- Work is done in an issue/feature branch (or a fork) and then pushed to a new branch
- Automated testing is run using Github Actions. All tests must pass:
 - Unit testing
 - Build/packaging tests
 - Documentation building test
- If the tests pass, then a manual pull request can be approved to merge into main
- The main branch is protected and therefore can only be written to after the code has been reviewed and approved
- No individual has the privileges to push to the main branch

A.3.5 Release versions

For the past few years, QAequilibraE's release versioning was related to the major and minor releases in AequilibraE. If you frequently update your plugin, you might have noticed that we recently jumped from v1.3.1 to v1.4.3, without any micro releases in between, just because these were the most recent AequilibraE version when the releases happened.

To add the *Plugin Repository* feature, the development team decided to change how the QAequilibraE versioning is done. We'll move from version tags based on AequilibraE, for time-based tags when the release is made (so don't be scared if you see a version such as 25.192.23).

We'll continue using the de-facto Python standard for versioning, but with a different version scheme.

MAJOR.MINOR[.MICRO]

- MAJOR designates the year of the release
- · MINOR designates the number of the day in the year
- MICRO designates the hour of the day the release was made

A.3.6 Testing

QAequilibraE testing is done with some tools:

- Black, the uncompromising code formatter
- Ruff, a linter and code formatter
- pytest, a Python testing tool
- pytest-cov, a tool for measuring test code coverage
- pytest-qt, a tool for testing PyQt5 applications
- pytest-qgis, a tool for writing QGIS tests

To run the tests locally, you will need to figure out what to do...

These same tests are run by GitHub Actions with each push to the repository. These tests need to pass in order to somebody manually review the code before merging it into main (or returning for corrections).

In some cases, test targets need to be updated to match the new results produced by the code since these are now the correct results. In order to update the test targets, first determine which tests are failing and then review the failing lines in the source files. These are easy to identify since each test ultimately comes down to one of Python's various types of assert statements. Once you identify which assert is failing, you can work your way back through the code that creates the test targets in order to update it. After updating the test targets, re-run the tests to confirm the new code passes all the tests.

A.3.7 Documentation

All the QAequilibraE documentation is (unfortunately) written in reStructuredText and built with Sphinx. Although reStructuredText is often unnecessarily convoluted to write, Sphinx is capable of converting it to standard-looking HTML pages, while also bringing the docstring documentation along for the ride.

To build the documentation, first make sure the required packages are installed:

pip install sphinx pydata-sphinx-theme sphinx-design sphinx-panels sphinx-subfigure

Next, build the documentation in HTML format with the following commands run from the root folder:

cd docs make html

A.3.8 Finally

A LOT of the structure around the documentation was borrowed (copied) from the excellent project ActivitySim.

APPENDIX

PLUGIN INTERNATIONALIZATION (I18N)

In this section, we briefly explain how you can set up your Transifex account and start contributing to QAquilibraE translation.

B.1 Creating account

To translate QAequilibraE's QGIS plugin, we use Transifex, a web-based platform that hosts translations. Before joining our project, you must create an account. Direct yourself to Transifex login page and follow the instructions. The process is straightforward and does not take a lot of time.

After creating your account, direct yourself to team's page and request your access to the project. Approving your request might take a couple of days (we are a small team of developers!), so don't worry.

transifex EXPLORE	Q Search public projects		Log In SIGN UP
Explore / AequilibraE / qaequilibrae qaequilibrae qaequilibrae			Spread the word 🕑 in f
7 Languages			qe
Portuguese (Brazil)		88%	Source language
French (France)		88%	English Date created
French		88%	May 18, 2023
Chinese		0%	Number of contributors 6
Italian		0%	Total words to translate 2.00K
Spanish		0%	Last activity 21 days ago
German		0%	
			Got a localisation project? Do it with Transfex, free forever.

You'll be redirected to this page to enter your translation languages of preference.

transifex Painel		Sem organizações		2
	Join qaequilibrae project on AequilibraE			
	Please select a language to continue			
	Portuguese (Brazil) XV			
	(i) Some useful information for you before going forward:			
	 When your request is accepted or denied you will receive a notification. After a succesful submit you will be redirected to your dashboard. 			
				G
	Join Project			
Q Search documentation Co	munidade Estado Contactar		Transifex © 2023	

As soon as you have your request approved, you can log in once more in Transifex and begin translating.

transifex		Sem organizações	~ •	0	
	8-8 8 ⁻⁸			•	
	Welcome				L ₂
	 With Transifex, you have everything you need to localize digital content and global customers with a beautiful user experience! A join request has been sent to your project of choice. In the meantime, explore other projects you can contribute to. 	l provide			
	Join another organization ou Create an organization				
	Q Search documentation Comunidade Estado Contactar	Portug	uese 🗸 🛛 Transifex 🗅	2023	

B.2 Translating into your language

Your project screen should look like the one in the figure below. If you feel comfortable translating into any of these idioms, just drag your cursor to the right side of each translatable idiom and click on the **Translate** button.

bx Dashboard	Q Search ¥	qe qaequilibrae Assigned to gaequilibrae team	🗞 🍤 🚦
≵ A Editor E Tasks Reports	Overview Languages Resources Screenshots Settings	670 Total source strings • 11.86% Reviewed • 37.72% Translated • 62.28% Untranslated	2.00K Source words / 1 resource
Glossaries C Teams Strings		V Localization activity Project languages 4 Without translators French (fr) 79 strings to translate 591 strings to review French (France) (fr_FR) 79 strings to translate 591 strings to review	
		Portuguese (Brazil) (pL_BR) 83 strings to translate 31 strings to review Chinese (zh) 670 strings to translate 0 strings to review NO TRANSLATORS German (de) 670 strings to translate 0 strings to review NO TRANSLATORS Italian (it) 670 strings to translate 0 strings to review NO TRANSLATORS Spanish (es) 670 strings to translate 0 strings to review NO TRANSLATORS	View resource Translate

You'll be redirected to a new page.

= 🗙 qaequilibrae / qaequilibrae//f8n/qaequilibrae.ts (develop)	English (en) Portuguese (Brazil) (pt_BR)	Edit Source				2A Check E Overview Q. Concordance
670 At	83 Unterestated	31 Utreviewed	AcquilibraE Version name		Suggestions History	Glossary Comments
T Filters Q. Search by text or filter					3 suggestions available	Concordance
Text - Status - Tag - Users - Date - Label - More -		Sort by: Default ~			Nome da versão do AequilibraE AequilibraE Version name	
AequilibraE Version name	Nome da versão do AequilibraE	0				quilibraa/18n/qaequilibrae.ts (develop), 6 months
AequilibraE Version number 2	Número da versão do AequilbraE	0	Nome da versão do AequilibraE		BBS. Número da versão do AequibraE	
GUI version	Versilo da GUI	0			Aequilibral: Version number	a NBrigaoquilibrae.ts (develop) , 6 months ago - pt_BR
GUI Repository	Repositório da GUI	0		Unceview Save Changes Y	645 mith AeguilibraE - Gradiente de cor AeguilibraE - Color Remps	
V Minimum QGIS	Versão mínima do QGIS	0		Onexes Save Changes *		Affen/geequilibrae.ts (develop), 10 months ago - pt_BR
Developers 0	Desenvolvedores	0	Кау	Edit context More Info		
V Sponsors	Financiamento	0	AcquilibraE Version name Character Limit	Size 3 words Occurrences		
Go through all the centroids and add connectors only if none exists mode	for the chosen	0		./modules/common_tools/about_dialog.py/50 Context AboutDialog		
Connectors per centrold		0		Resource qaequilibrae//8n/qaequilibrae.ts (develop) String Hash		
Modes to connect (only one at a time)		0		59d2021cdd0e5646c00d48108c80e207		
Project path		0				
AequilibraE module not found		0				
Opening project		0				
Adding [] connectors when none exists for mode "()"		0				
Add centroid connectors		0				
Model Building		0				
Importing zones 17	Importando zonas	0			4	
V Project	Projeto	0				

You can check the translation status in the left column (*Text*), where the green buttons indicate that there is an existing translation for that string. You can insert their translation in the box and save it for all strings If your string happens to appear multiple times, Transifex will give you translation suggestions, that can match whatever you want to translate. This can spare you some time.

When you finish your work, direct yourself to the Unreviewed field, to check all strings you have translated. Here's

your opportunity to look out for typos or incorrect translations.

For more information, we strongly encourage you to check Transifex official documentation in their website.

B.3 Suggesting a new translation language

If your language is unavailable and you want to contribute, you can request it directly to the AequilibraE Team! In your project screen, look for the **Request a language** button on the page.

b ≍ ⊡ Dashboard t _A	Q Search V	qe qaequilibrae Assigned to qaequilibrae team	🗞 🎭 🚦
Editor E Tasks Reports	Overview Languages Resources Screenshots Settings	670 Total source strings • 11.86% Reviewed • 37.72% Translated • 62.28% Untranslated	2.00K Source words / 1 resource
Glossaries OC Teams		✓ Localization activity	
CT) Strings		7 Project languages 4 Without translators French (fr) 79 strings to translate 591 strings to review French (France) (fr_FR) 79 strings to translate 591 strings to review	
		Portuguese (Brazil) (pt_BR) 83 strings to translate 31 strings to review	View resource Translate
		Chinese (zh) 670 strings to translate 0 strings to review NO TRANSLATORS German (de) 670 strings to translate 0 strings to review NO TRANSLATORS	
		Italian (it) 670 strings to translate 0 strings to review NO TRANSLATORS Spanish (es) 670 strings to translate 0 strings to review NO TRANSLATORS	
			Request a language

Select your language and create a request. As soon as possible, we'll approve the creation of the language, and you can start translating!

Request language for qaequilibrae	×
Languages: Polish (pl)	>
(i) Requesting a language for the project does not automatically make you a member of it. Please make a Join team request to start contributing.	
When your language request is accepted or denied you will receive a notification.	

B.4 Translation tips!

Last but not least, here are some recommendations for translation, many of them borrowed / adapted from QGIS documentation.

- 1. Be aware to use exactly the same (number of) special characters of the source text such as `, ``, *, **, ::, {}. These contribute to the cosmetics of the information provided.
- 2. Do not begin nor end the text hold by special characters or tags with a space
- 3. Do not end the translated strings with a new paragraph, otherwise the text will not be translated during the HTML generation.
- 4. Prefer using format over f-strings.

APPENDIX

С

SUPPORT & SPONSORS

C.1 Support

AequilibraE is developed by a small but dedicated team of professionals with limited funding.

C.1.1 Paid support

Paid support for AequilibraE is offered by Outer Loop Consulting, an Australia-based consulting company, with support available in English, Portuguese, German & Spanish.

All support is offered in prepaid packages of a minimum of 10h of consulting by phone, e-mail or Microsoft Teams at a fixed rate of USD 150/h.

To acquire a paid support package for AequilibraE, please e-mail aequilibrae@outerloop.io

C.1.2 Free support

There are two mechanisms to obtain free support that also allow you to check whether your question was already asked in the past, with the first option being the most often used as of December/2023:

- 1. Joining the AequilibraE Google Group and sending your question there.
- 2. Posting your question to GIS StackOverflow using the #aequilibrae tag;

Please note that all questions and answers in both forums are public.

When sending your question, be as specific as possible, providing screenshots, details on the QGIS version, and as much detail as you can!

C.2 Sponsors

Sponsoring AequilibraE's maintenance and new features is the best way to guarantee that the bugs you need fixed and the features your projects require are incorporated quickly into the software. Please contact aequilibrae@outerloop.io for sponsoring opportunities.

Maintenan	Maintenance Sponsors		
2024	ADEME		
2023	Outer Loop Consulting - La Fabrique des Mobilités - EGIS France		
2022	Outer Loop Consulting		
2021	Outer Loop Consulting		
2016	Instituto de Pesquisa Econômica Aplicada		

Feature Sponsors	
2023	GTFS import - La Fabrique des Mobilités
	Transit assignment - EGIS France
	Select Link Analysis - Outer Loop Consulting

APPENDIX

CITE US!

If you're using QAequilibraE in a scientific publication, we would appreciate citations to the following paper: Camargo, P. (2015) AequilibraE: a free QGIS add-on for transportation modeling. Foss4g North America

INDEX

I
installation, 1