Source code for aequilibrae.paths.multi_threaded_skimming

import numpy as np


[docs] class MultiThreadedNetworkSkimming: def __init__(self): # The predecessors for each node in the graph self.predecessors = np.array([], np.int64) # holds the skims for all nodes in the network (during path finding) self.temporary_skims = np.array([], np.int64) # Keeps the order in which the nodes were reached for the cascading network loading self.reached_first = np.array([], np.int64) # The previous link for each node in the tree self.connectors = np.array([], np.int64) # holds the b_nodes in case of flows through centroid connectors are blocked self.temp_b_nodes = np.array([], np.int64) # In case we want to do by hand, we can prepare each method individually
[docs] def prepare(self, graph, results): itype = graph.default_types("int") ftype = graph.default_types("float") self.predecessors = np.zeros((results.cores, results.nodes), dtype=itype) self.temporary_skims = np.zeros((results.cores, results.nodes, results.num_skims), dtype=ftype) self.reached_first = np.zeros((results.cores, results.nodes), dtype=itype) self.connectors = np.zeros((results.cores, results.nodes), dtype=itype) self.temp_b_nodes = np.zeros((results.cores, graph.compact_graph.b_node.values.shape[0]), dtype=itype) for i in range(results.cores): self.temp_b_nodes[i, :] = graph.compact_graph.b_node.values[:]