
AequilibraE Documentation

Pedro Camargo

Aug 19, 2024

CONTENTS

1 Examples 3

2 Modeling with AequilibraE 85

3 API Reference 177

A Installation 251

B IPF Performance 255

C Traffic Assignment 261

D Importing from Open Street Maps 281

E Importing from files in GMNS format 283

F Exporting AequilibraE model to GMNS format 285

Python Module Index 287

Index 289

i

ii

AequilibraE Documentation

AequilibraE is the first comprehensive Python package for transportation modeling, and it aims to provide all the
resources not easily available from other open-source packages in the Python (NumPy, really) ecosystem.

Download documentation: HTML | PDF

Previous versions: documentation for AequilibraE’s versions before 0.9.0 are available here.

Useful links: Installation | validation | developing_aequilibrae | support | history_of_aequilibrae

Examples A series of examples on how to use AequilibraE, from building a model from scratch to editing an existing,
performing trip distribution or traffic assignment to analyzing results.

Examples Modeling with AequilibraE An in-depth guide to modeling with AequilibraE, including the
concepts that guide its development and user-experience.

Modeling with AequilibraE API References Reference guide to AequilibraE’s API.

API Reference Not a programmer? Take me to the GUI!

https://www.aequilibrae.com/qgis/latest/

CONTENTS 1

https://www.aequilibrae.com/qgis/latest/

AequilibraE Documentation

2 CONTENTS

CHAPTER

ONE

EXAMPLES

A series of different examples using AequilibraE’s main features

1.1 Creating Models

1.2 Editing networks

1.3 Trip Distribution

1.4 Visualization

Examples in this session allows the user to plot some data visualization.

1.5 AequilibraE without a Model

1.6 Assignment Workflows

1.7 Other Applications

1.7.1 Creating Models

Project from OpenStreetMap

In this example, we show how to create an empty project and populate it with a network from OpenStreetMap.

This time we will use Folium to visualize the network.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae import Project
import folium

We create an empty project on an arbitrary folder

3

AequilibraE Documentation

fldr = join(gettempdir(), uuid4().hex)
project = Project()
project.new(fldr)

Now we can download the network from any place in the world (as long as you have memory for all the download and
data wrangling that will be done).

We can create from a bounding box or a named place. For the sake of this example, we will choose the small nation of
Nauru.

project.network.create_from_osm(place_name="Nauru")

We can also choose to create a model from a polygon (which must be in EPSG:4326) Or from a Polygon defined by a
bounding box, for example.

project.network.create_from_osm(model_area=box(-112.185, 36.59, -112.179, 36.60))

We grab all the links data as a Pandas DataFrame so we can process it easier

links = project.network.links.data

We create a Folium layer

network_links = folium.FeatureGroup("links")

We do some Python magic to transform this dataset into the format required by Folium. We are only getting link_id
and link_type into the map, but we could get other pieces of info as well.

for i, row in links.iterrows():
points = row.geometry.wkt.replace("LINESTRING ", "").replace("(", "").replace(")", "

→˓").split(", ")
points = "[[" + "],[".join([p.replace(" ", ", ") for p in points]) + "]]"
we need to take from x/y to lat/long
points = [[x[1], x[0]] for x in eval(points)]

line = folium.vector_layers.PolyLine(
points, popup=f"link_id: {row.link_id}", tooltip=f"{row.link_type}",␣

→˓color="blue", weight=10
).add_to(network_links)

We get the center of the region we are working with some SQL magic

curr = project.conn.cursor()
curr.execute("select avg(xmin), avg(ymin) from idx_links_geometry")
long, lat = curr.fetchone()

map_osm = folium.Map(location=[lat, long], zoom_start=14)
network_links.add_to(map_osm)
folium.LayerControl().add_to(map_osm)
map_osm

project.close()

4 Chapter 1. Examples

AequilibraE Documentation

Creating a zone system based on Hex Bins

In this example, we show how to create hex bin zones covering an arbitrary area.

We use the Nauru example to create roughly 100 zones covering the whole modeling area as delimited by the entire
network

You are obviously welcome to create whatever zone system you would like, as long as you have the geometries for
them. In that case, you can just skip the hex bin computation part of this notebook.

We also add centroid connectors to our network to make it a pretty complete example

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from math import sqrt
from shapely.geometry import Point
import shapely.wkb
from aequilibrae.utils.create_example import create_example, list_examples

We create an empty project on an arbitrary folder

fldr = join(gettempdir(), uuid4().hex)

We can print the list of examples that ship with AequilibraE
print(list_examples())

Let's use the Nauru example project for display
project = create_example(fldr, "nauru")

['sioux_falls', 'nauru', 'coquimbo']

We said we wanted 100 zones

zones = 100

Hex Bins using Spatialite

Spatialite requires a few things to compute hex bins. One of them is the area you want to cover.

network = project.network

So we use the convenient network method convex_hull() (it may take some time for very large networks)

geo = network.convex_hull()

The second thing is the side of the hex bin, which we can compute from its area. The approximate area of the desired
hex bin is

zone_area = geo.area / zones

Since the area of the hexagon is 3 * sqrt(3) * side^2 / 2 is side is equal to sqrt(2 * sqrt(3) * A/9)

1.7. Other Applications 5

AequilibraE Documentation

zone_side = sqrt(2 * sqrt(3) * zone_area / 9)

Now we can run an SQL query to compute the hexagonal grid. There are many ways to create hex bins (including with
a GUI on QGIS), but we find that using SpatiaLite is a pretty neat solution. For which we will use the entire network
bounding box to make sure we cover everything

extent = network.extent()

curr = project.conn.cursor()
b = extent.bounds
curr.execute(

"select st_asbinary(HexagonalGrid(GeomFromWKB(?), ?, 0, GeomFromWKB(?)))",
[extent.wkb, zone_side, Point(b[2], b[3]).wkb],

)
grid = curr.fetchone()[0]
grid = shapely.wkb.loads(grid)

Since we used the bounding box, we have WAY more zones than we wanted, so we clean them by only keeping those
that intersect the network convex hull.

grid = [p for p in grid.geoms if p.intersects(geo)]

Let’s re-number all nodes with IDs smaller than 300 to something bigger as to free space to our centroids to go from 1
to N

nodes = network.nodes
for i in range(1, 301):

nd = nodes.get(i)
nd.renumber(i + 1300)

Now we can add them to the model And add centroids to them while we are at it

zoning = project.zoning
for i, zone_geo in enumerate(grid):

zone = zoning.new(i + 1)
zone.geometry = zone_geo
zone.save()
None means that the centroid will be added in the geometric point of the zone
But we could provide a Shapely point as an alternative
zone.add_centroid(None)

Centroid connectors

for zone_id, zone in zoning.all_zones().items():
We will connect for walk, with 1 connector per zone
zone.connect_mode(mode_id="w", connectors=1)

And for cars, for cars with 2 connectors per zone
We also specify the link types we accept to connect to (can be used to avoid␣

→˓connection to ramps or freeways)
zone.connect_mode(mode_id="c", link_types="ytrusP", connectors=2)

(continues on next page)

6 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

This takes a few minutes to compute, so we will break after processing the first␣
→˓10 zones
if zone_id >= 10:

break

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/connector_creation.py:85: UserWarning: One of the clusters is empty. Re-run␣
→˓kmeans with a different initialization.
centroids, allocation = kmeans2(whitened, num_connectors)

Let’s add special generator zones We also add a centroid at the airport terminal

nodes = project.network.nodes

Let’s use some silly number for its ID, like 10,000, just so we can easily differentiate it

airport = nodes.new_centroid(10000)
airport.geometry = Point(166.91749582, -0.54472590)
airport.save()

When connecting a centroid not associated with a zone, we need to tell AequilibraE what is the initial area around
the centroid that needs to be considered when looking for candidate nodes. Distance here is in degrees, so 0.01 is
equivalent to roughly 1.1km

airport.connect_mode(airport.geometry.buffer(0.01), mode_id="c", link_types="ytrusP",␣
→˓connectors=1)

project.close()

Total running time of the script: (0 minutes 4.438 seconds)

Import GTFS

In this example, we import a GTFS feed to our model and perform map matching.

We use data from Coquimbo, a city in La Serena Metropolitan Area in Chile.

Imports
from uuid import uuid4
from os import remove
from os.path import join
from tempfile import gettempdir

import folium
import pandas as pd
from aequilibrae.project.database_connection import database_connection

from aequilibrae.transit import Transit
from aequilibrae.utils.create_example import create_example

Let’s create an empty project on an arbitrary folder.

1.7. Other Applications 7

AequilibraE Documentation

fldr = join(gettempdir(), uuid4().hex)
project = create_example(fldr, "coquimbo")

As the Coquimbo example already has a complete GTFS model, we shall remove its public transport database for the
sake of this example.

remove(join(fldr, "public_transport.sqlite"))

Let’s import the GTFS feed.

dest_path = join(fldr, "gtfs_coquimbo.zip")

Now we create our Transit object and import the GTFS feed into our model. This will automatically create a new public
transport database.

data = Transit(project)

transit = data.new_gtfs_builder(agency="Lisanco", file_path=dest_path)

To load the data, we must choose one date. We’re going to continue with 2016-04-13 but feel free to experiment with
any other available dates. Transit class has a function allowing you to check dates for the GTFS feed. It should take
approximately 2 minutes to load the data.

transit.load_date("2016-04-13")

Now we execute the map matching to find the real paths.
Depending on the GTFS size, this process can be really time-consuming.
transit.set_allow_map_match(True)
transit.map_match()

Finally, we save our GTFS into our model.
transit.save_to_disk()

Now we will plot one of the route’s patterns we just imported

conn = database_connection("transit")

links = pd.read_sql("SELECT pattern_id, ST_AsText(geometry) geom FROM routes;", con=conn)

stops = pd.read_sql("""SELECT stop_id, ST_X(geometry) X, ST_Y(geometry) Y FROM stops""",␣
→˓con=conn)

gtfs_links = folium.FeatureGroup("links")
gtfs_stops = folium.FeatureGroup("stops")

layers = [gtfs_links, gtfs_stops]

pattern_colors = ["#146DB3", "#EB9719"]

for i, row in links.iterrows():
points = row.geom.replace("MULTILINESTRING", "").replace("(", "").replace(")", "").

→˓split(", ")
points = "[[" + "],[".join([p.replace(" ", ", ") for p in points]) + "]]"

(continues on next page)

8 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

points = [[x[1], x[0]] for x in eval(points)]

_ = folium.vector_layers.PolyLine(
points,
popup=f"pattern_id: {row.pattern_id}",
color=pattern_colors[i],
weight=5,

).add_to(gtfs_links)

for i, row in stops.iterrows():
point = (row.Y, row.X)

_ = folium.vector_layers.CircleMarker(
point,
popup=f"stop_id: {row.stop_id}",
color="black",
radius=2,
fill=True,
fillColor="black",
fillOpacity=1.0,

).add_to(gtfs_stops)

Let’s create the map!

map_osm = folium.Map(location=[-29.93, -71.29], zoom_start=13)

add all layers
for layer in layers:

layer.add_to(map_osm)

And add layer control before we display it
folium.LayerControl().add_to(map_osm)
map_osm

project.close()

Total running time of the script: (0 minutes 26.250 seconds)

Importing network from GMNS

In this example, we import a simple network in GMNS format. The source files of this network are publicly available
in the GMNS GitHub repository itself. Here’s the repository: https://github.com/zephyr-data-specs/GMNS

Imports
from uuid import uuid4
from os.path import join
from tempfile import gettempdir
from aequilibrae.project import Project
from aequilibrae.parameters import Parameters
import folium

We load the example file from the GMNS GitHub repository

1.7. Other Applications 9

https://github.com/zephyr-data-specs/GMNS

AequilibraE Documentation

link_file = "https://raw.githubusercontent.com/zephyr-data-specs/GMNS/main/examples/
→˓Arlington_Signals/link.csv"
node_file = "https://raw.githubusercontent.com/zephyr-data-specs/GMNS/main/examples/
→˓Arlington_Signals/node.csv"
use_group_file = "https://raw.githubusercontent.com/zephyr-data-specs/GMNS/main/examples/
→˓Arlington_Signals/use_group.csv"

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)

project = Project()
project.new(fldr)

In this cell, we modify the AequilibraE parameters.yml file so it contains additional fields to be read in the GMNS link
and/or node tables. Remember to always keep the “required” key set to False, since we are adding a non-required field.

new_link_fields = {
"bridge": {"description": "bridge flag", "type": "text", "required": False},
"tunnel": {"description": "tunnel flag", "type": "text", "required": False},

}
new_node_fields = {

"port": {"description": "port flag", "type": "text", "required": False},
"hospital": {"description": "hospital flag", "type": "text", "required": False},

}

par = Parameters()
par.parameters["network"]["gmns"]["link"]["fields"].update(new_link_fields)
par.parameters["network"]["gmns"]["node"]["fields"].update(new_node_fields)
par.write_back()

As it is specified that the geometries are in the coordinate system EPSG:32619, which is different than the system
supported by AequilibraE (EPSG:4326), we inform the srid in the method call:

project.network.create_from_gmns(
link_file_path=link_file, node_file_path=node_file, use_group_path=use_group_file,␣

→˓srid=32619
)

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/gmns_builder.py:228: FutureWarning: Setting an item of incompatible dtype is␣
→˓deprecated and will raise in a future error of pandas. Value '[-71.15427901 -71.
→˓15136675 -71.15133733 -71.1551403 -71.15469925
-71.15315227 -71.15214063 -71.15219271 -71.15159845 -71.15143163
-71.15498211 -71.15514462 -71.15462884 -71.15464758 -71.15317057
-71.15288507 -71.15323051 -71.15342915 -71.15199735 -71.15216062]' has dtype␣
→˓incompatible with int64, please explicitly cast to a compatible dtype first.
self.node_df.loc[:, "x_coord"] = np.around(lons, decimals=10)

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/gmns_builder.py:229: FutureWarning: Setting an item of incompatible dtype is␣
→˓deprecated and will raise in a future error of pandas. Value '[42.41718801 42.41661235␣
→˓42.41468574 42.41394787 42.41597338 42.41551617
42.4150759 42.41411134 42.41663501 42.41637699 42.41394184 42.41407387

(continues on next page)

10 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

42.41604675 42.4158843 42.41569593 42.41552119 42.41531658 42.41543892
42.41515063 42.41494944]' has dtype incompatible with int64, please explicitly cast to␣
→˓a compatible dtype first.
self.node_df.loc[:, "y_coord"] = np.around(lats, decimals=10)

Fields not imported from node table: wkt_coord. If you want them to be imported, please␣
→˓modify the parameters.yml file.

Now, let’s plot a map. This map can be compared with the images of the README.md file located in this example repos-
itory on GitHub: https://github.com/zephyr-data-specs/GMNS/blob/develop/examples/Arlington_Signals/README.
md

links = project.network.links.data
nodes = project.network.nodes.data

We create our Folium layers

network_links = folium.FeatureGroup("links")
network_nodes = folium.FeatureGroup("nodes")
layers = [network_links, network_nodes]

We do some Python magic to transform this dataset into the format required by Folium We are only getting link_id and
link_type into the map, but we could get other pieces of info as well

for i, row in links.iterrows():
points = row.geometry.wkt.replace("LINESTRING ", "").replace("(", "").replace(")", "

→˓").split(", ")
points = "[[" + "],[".join([p.replace(" ", ", ") for p in points]) + "]]"
we need to take from x/y to lat/long
points = [[x[1], x[0]] for x in eval(points)]

_ = folium.vector_layers.PolyLine(
points, popup=f"link_id: {row.link_id}", tooltip=f"{row.modes}", color=

→˓"black", weight=2
).add_to(network_links)

And now we get the nodes

for i, row in nodes.iterrows():
point = (row.geometry.y, row.geometry.x)

_ = folium.vector_layers.CircleMarker(
point,
popup=f"link_id: {row.node_id}",
tooltip=f"{row.modes}",
color="red",
radius=5,
fill=True,
fillColor="red",
fillOpacity=1.0,

).add_to(network_nodes)

We get the center of the region

1.7. Other Applications 11

https://github.com/zephyr-data-specs/GMNS/blob/develop/examples/Arlington_Signals/README.md
https://github.com/zephyr-data-specs/GMNS/blob/develop/examples/Arlington_Signals/README.md

AequilibraE Documentation

curr = project.conn.cursor()
curr.execute("select avg(xmin), avg(ymin) from idx_links_geometry")
long, lat = curr.fetchone()

We create the map

map_gmns = folium.Map(location=[lat, long], zoom_start=17)

Add all layers
for layer in layers:

layer.add_to(map_gmns)

And Add layer control before we display it
folium.LayerControl().add_to(map_gmns)
map_gmns

project.close()

Total running time of the script: (0 minutes 1.571 seconds)

Project from a link layer

In this example, we show how to create an empty project and populate it with a network coming from a link layer we
load from a text file. It can easily be replaced with a different form of loading the data (GeoPandas, for example).

We use Folium to visualize the resulting network.

Imports
from uuid import uuid4
import urllib.request
from string import ascii_lowercase
from tempfile import gettempdir
from os.path import join
from shapely.wkt import loads as load_wkt
import pandas as pd
import folium

from aequilibrae import Project

We create an empty project on an arbitrary folder

fldr = join(gettempdir(), uuid4().hex)
project = Project()
project.new(fldr)

Now we obtain the link data for our example (in this case from a link layer we will download from the AequilibraE
website). With data, we load it on Pandas

dest_path = join(fldr, "queluz.csv")
urllib.request.urlretrieve("https://aequilibrae.com/data/queluz.csv", dest_path)

df = pd.read_csv(dest_path)

Let’s see if we have to add new link_types to the model before we add links The links we have in the data are:

12 Chapter 1. Examples

AequilibraE Documentation

link_types = df.link_type.unique()

And the existing link types are

lt = project.network.link_types
lt_dict = lt.all_types()
existing_types = [ltype.link_type for ltype in lt_dict.values()]

We could also get it directly from the project database

existing_types = [x[0] for x in project.conn.execute('Select link_type from link_types
→˓')]

We add the link types that do not exist yet The trickier part is to choose a unique link type ID for each link type You
might want to tailor the link type for your use, but here we get letters in alphabetical order

types_to_add = [ltype for ltype in link_types if ltype not in existing_types]
for i, ltype in enumerate(types_to_add):

new_type = lt.new(ascii_lowercase[i])
new_type.link_type = ltype
new_type.description = 'Your custom description here if you have one'
new_type.save()

We need to use a similar process for modes

md = project.network.modes
md_dict = md.all_modes()
existing_modes = {k: v.mode_name for k, v in md_dict.items()}

Now let’s see the modes we have in the network that we DON’T have already in the model.

We get all the unique mode combinations and merge them into a single string

all_variations_string = "".join(df.modes.unique())

We then get all the unique modes in that string above
all_modes = set(all_variations_string)

This would all fit nicely in a single line of code, btw. Try it!

Now let’s add any new mode to the project

modes_to_add = [mode for mode in all_modes if mode not in existing_modes]
for i, mode_id in enumerate(modes_to_add):

new_mode = md.new(mode_id)
You would need to figure out the right name for each one, but this will do
new_mode.mode_name = f"Mode_from_original_data_{mode_id}"
new_type.description = 'Your custom description here if you have one'

It is a little different because you need to add it to the project
project.network.modes.add(new_mode)
new_mode.save()

We cannot use the existing link_id, so we create a new field to not loose this information

1.7. Other Applications 13

AequilibraE Documentation

links = project.network.links
link_data = links.fields

Create the field and add a good description for it
link_data.add("source_id", "link_id from the data source")

We need to refresh the fields so the adding method can see it
links.refresh_fields()

We can now add all links to the project!

for idx, record in df.iterrows():
new_link = links.new()

Now let's add all the fields we had
new_link.source_id = record.link_id
new_link.direction = record.direction
new_link.modes = record.modes
new_link.link_type = record.link_type
new_link.name = record.name
new_link.geometry = load_wkt(record.WKT)
new_link.save()

We grab all the links data as a Pandas DataFrame so we can process it easier

links = project.network.links.data

We create a Folium layer

network_links = folium.FeatureGroup("links")

We do some Python magic to transform this dataset into the format required by Folium. We are only getting link_id
and link_type into the map, but we could get other pieces of info as well

for i, row in links.iterrows():
points = row.geometry.wkt.replace("LINESTRING ", "").replace("(", "").replace(")", "

→˓").split(", ")
points = "[[" + "],[".join([p.replace(" ", ", ") for p in points]) + "]]"
We need to take from x/y to lat/long
points = [[x[1], x[0]] for x in eval(points)]

line = folium.vector_layers.PolyLine(
points, popup=f"link_id: {row.link_id}", tooltip=f"{row.link_type}",␣

→˓color="blue", weight=10
).add_to(network_links)

We get the center of the region we are working with some SQL magic

curr = project.conn.cursor()
curr.execute("select avg(xmin), avg(ymin) from idx_links_geometry")
long, lat = curr.fetchone()

14 Chapter 1. Examples

AequilibraE Documentation

map_osm = folium.Map(location=[lat, long], zoom_start=15)
network_links.add_to(map_osm)
folium.LayerControl().add_to(map_osm)
map_osm

project.close()

Total running time of the script: (0 minutes 2.640 seconds)

1.7.2 Editing networks

Editing network geometry: Nodes

In this example, we show how to mode a node in the network and look into what happens to the links.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example
from shapely.geometry import Point
import matplotlib.pyplot as plt

We create the example project inside our temp folder.

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr)

Let’s move node one from the upper left corner of the image above, a bit to the left and to the bottom.

We also add the node we want to move.

all_nodes = project.network.nodes
links = project.network.links
node = all_nodes.get(1)
new_geo = Point(node.geometry.x + 0.02, node.geometry.y - 0.02)
node.geometry = new_geo

We can save changes for all nodes we have edited so far.
node.save()

If you want to show the path in Python.

We do NOT recommend this, though. . . . It is very slow for real networks.

We plot the entire network.

links.refresh()
curr = project.conn.cursor()
curr.execute("Select link_id from links;")

for lid in curr.fetchall():
geo = links.get(lid[0]).geometry

(continues on next page)

1.7. Other Applications 15

AequilibraE Documentation

(continued from previous page)

plt.plot(*geo.xy, color="blue")

plt.plot(*node.geometry.xy, "o", color="black")

plt.show()

Did you notice the links are matching the node? Look at the original network and see how it used to look like.

project.close()

Total running time of the script: (0 minutes 0.531 seconds)

Editing network geometry: Links

In this example, we move a link extremity from one point to another and see what happens to the network.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example
from shapely.geometry import LineString, Point
import matplotlib.pyplot as plt

16 Chapter 1. Examples

AequilibraE Documentation

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr)

all_nodes = project.network.nodes
links = project.network.links

Let’s move node one from the upper left corner of the image above, a bit to the left and to the bottom

We edit the link that goes from node 1 to node 2
link = links.get(1)
node = all_nodes.get(1)
new_extremity = Point(node.geometry.x + 0.02, node.geometry.y - 0.02)
link.geometry = LineString([node.geometry, new_extremity])

and the link that goes from node 2 to node 1
link = links.get(3)
node2 = all_nodes.get(2)
link.geometry = LineString([new_extremity, node2.geometry])

links.save()
links.refresh()

Because each link is unidirectional, you can no longer go from node 1 to node 2, obviously.

We do NOT recommend this, though. . . . It is very slow for real networks.

We plot the entire network.

curr = project.conn.cursor()
curr.execute("Select link_id from links;")

for lid in curr.fetchall():
geo = links.get(lid[0]).geometry
plt.plot(*geo.xy, color="blue")

all_nodes = project.network.nodes
curr = project.conn.cursor()
curr.execute("Select node_id from nodes;")

for nid in curr.fetchall():
geo = all_nodes.get(nid[0]).geometry
plt.plot(*geo.xy, "o", color="black")

plt.show()

Now look at the network and how it used to be.

1.7. Other Applications 17

AequilibraE Documentation

project.close()

Total running time of the script: (0 minutes 0.617 seconds)

Editing network geometry: Splitting link

In this example, we split a link right in the middle, while keeping all fields in the database equal. Distance is propor-
tionally computed automatically in the database.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example
from shapely.ops import substring
import matplotlib.pyplot as plt

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr)

We will split link 37 right in the middle. Let’s get the link and check its length.

18 Chapter 1. Examples

AequilibraE Documentation

links = project.network.links
all_nodes = project.network.nodes

link = links.get(37)
print(link.distance)

6010.108655014215

The idea is basically to copy a link and allocate the appropriate geometries to split the geometry we use Shapely’s
substring.

new_link = links.copy_link(37)

first_geometry = substring(link.geometry, 0, 0.5, normalized=True)
second_geometry = substring(link.geometry, 0.5, 1, normalized=True)

link.geometry = first_geometry
new_link.geometry = second_geometry
links.save()

The link objects in memory still don’t have their ID fields updated, so we refresh them.

links.refresh()
link = links.get(37)
new_link = links.get(new_link.link_id)
print(link.distance, new_link.distance)

3005.040184141035 3005.0684894898027

We can plot the two links only

plt.clf()
plt.plot(*link.geometry.xy, color="blue")
plt.plot(*new_link.geometry.xy, color="blue")

for node in [link.a_node, link.b_node, new_link.b_node]:
geo = all_nodes.get(node).geometry
plt.plot(*geo.xy, "o", color="black")

plt.show()

1.7. Other Applications 19

AequilibraE Documentation

Or we plot the entire network

plt.clf()
curr = project.conn.cursor()
curr.execute("Select link_id from links;")

for lid in curr.fetchall():
geo = links.get(lid[0]).geometry
plt.plot(*geo.xy, color="blue")

all_nodes = project.network.nodes
curr = project.conn.cursor()
curr.execute("Select node_id from nodes;")

for nid in curr.fetchall():
geo = all_nodes.get(nid[0]).geometry
plt.plot(*geo.xy, "o", color="black")

plt.show()

20 Chapter 1. Examples

AequilibraE Documentation

project.close()

Total running time of the script: (0 minutes 0.731 seconds)

1.7.3 Trip Distribution

Running IPF without an AequilibraE model

In this example, we show you how to use AequilibraE’s IPF function without a model. This is a compliment to the
application in Trip Distribution.

Let’s consider that you have an OD-matrix, the future production and future attraction values. How would your trip
distribution matrix using IPF look like? The data used in this example comes from Table 5.6 in Ortúzar & Willumsen
(2011).

Imports
import numpy as np

from aequilibrae.distribution import Ipf
from os.path import join
from tempfile import gettempdir
from aequilibrae.matrix import AequilibraeMatrix, AequilibraeData

1.7. Other Applications 21

AequilibraE Documentation

folder = gettempdir()

matrix = np.array([[5, 50, 100, 200], [50, 5, 100, 300],
[50, 100, 5, 100], [100, 200, 250, 20]], dtype="float64")

future_prod = np.array([400, 460, 400, 702], dtype="float64")
future_attr = np.array([260, 400, 500, 802], dtype="float64")

num_zones = matrix.shape[0]

mtx = AequilibraeMatrix()
mtx.create_empty(file_name=join(folder, "matrix.aem"), zones=num_zones)
mtx.index[:] = np.arange(1, num_zones + 1)[:]
mtx.matrices[:, :, 0] = matrix[:]
mtx.computational_view()

args = {
"entries": mtx.index.shape[0],
"field_names": ["productions", "attractions"],
"data_types": [np.float64, np.float64],
"file_path": join(folder, "vectors.aem"),

}

vectors = AequilibraeData()
vectors.create_empty(**args)

vectors.productions[:] = future_prod[:]
vectors.attractions[:] = future_attr[:]

vectors.index[:] = mtx.index[:]

args = {
"matrix": mtx,
"rows": vectors,
"row_field": "productions",
"columns": vectors,
"column_field": "attractions",
"nan_as_zero": True,

}
fratar = Ipf(**args)
fratar.fit()

fratar.output.matrix_view

array([[5.19523253, 43.60117896, 97.1907419 , 254.02026689],
[44.70942645, 3.75225496, 83.64095928, 327.90930057],
[76.67583276, 128.70094592, 7.17213428, 187.45277887],
[133.41950826, 223.94562016, 311.99616454, 32.61765367]])

for line in fratar.report:
print(line)

22 Chapter 1. Examples

AequilibraE Documentation

IPF computation

Target convergence criteria: 0.0001
Maximum iterations: 5000

Rows:4
Columns: 4
Total of seed matrix: 1,635.0000
Total of target vectors: 1,962.0000

Iteration, Convergence
7 , 0.0000902085

Running time: 0.002s

Reference

ORTÚZAR, J.D., WILLUMSEN, L.G. (2011) Modelling Transport (4th ed.). Wiley-Blackwell.

Total running time of the script: (0 minutes 0.038 seconds)

Network skimming

In this example, we show how to perform network skimming for Coquimbo, a city in La Serena Metropolitan Area in
Chile.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr, "coquimbo")

import logging
import sys

We the project opens, we can tell the logger to direct all messages to the terminal as␣
→˓well
logger = project.logger
stdout_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(asctime)s;%(levelname)s ; %(message)s")
stdout_handler.setFormatter(formatter)
logger.addHandler(stdout_handler)

1.7. Other Applications 23

AequilibraE Documentation

Network Skimming

from aequilibrae.paths import NetworkSkimming
import numpy as np

Let’s build all graphs

project.network.build_graphs()
We get warnings that several fields in the project are filled with NaNs.
This is true, but we won't use those fields.

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/network.py:327: FutureWarning: Downcasting object dtype arrays on .fillna, .
→˓ffill, .bfill is deprecated and will change in a future version. Call result.infer_
→˓objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option(
→˓'future.no_silent_downcasting', True)`
df = pd.read_sql(sql, conn).fillna(value=np.nan)

2024-08-19 06:15:29,631;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:15:29,716;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:15:29,821;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:15:29,919;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

We grab the graph for cars

graph = project.network.graphs["c"]

we also see what graphs are available
project.network.graphs.keys()

let's say we want to minimize the distance
graph.set_graph("distance")

And will skim distance while we are at it, other fields like `free_flow_time` or␣
→˓`travel_time`
can be added here as well
graph.set_skimming(["distance"])

But let's say we only want a skim matrix for nodes 28-40, and 49-60 (inclusive),
these happen to be a selection of western centroids.
graph.prepare_graph(np.array(list(range(28, 41)) + list(range(49, 91))))

2024-08-19 06:15:30,001;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

And run the skimming

skm = NetworkSkimming(graph)
skm.execute()

The result is an AequilibraEMatrix object

24 Chapter 1. Examples

AequilibraE Documentation

skims = skm.results.skims

Which we can manipulate directly from its temp file, if we wish
skims.matrices[:3, :3, :]

array([[[0.],
[4166.92919206],
[5532.32681478]],

[[3733.4499255],
[0.],
[3311.30654014]],

[[5446.26074416],
[3596.12274848],
[0.]]])

Or access each matrix, lets just look at the first 3x3

skims.distance[:3, :3]

array([[0. , 4166.92919206, 5532.32681478],
[3733.4499255 , 0. , 3311.30654014],
[5446.26074416, 3596.12274848, 0.]])

We can save it to the project if we want

skm.save_to_project("base_skims")

2024-08-19 06:15:30,211;WARNING ; Matrix Record has been saved to the database

We can also retrieve this skim record to write something to its description

matrices = project.matrices
mat_record = matrices.get_record("base_skims")
mat_record.description = "minimized distance while also skimming distance for just a few␣
→˓nodes"
mat_record.save()

project.close()

Total running time of the script: (0 minutes 0.990 seconds)

1.7. Other Applications 25

AequilibraE Documentation

Path computation

In this example, we show how to perform path computation for Coquimbo, a city in La Serena Metropolitan Area in
Chile.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr, "coquimbo")

import logging
import sys

We the project opens, we can tell the logger to direct all messages to the terminal as well

logger = project.logger
stdout_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(asctime)s;%(levelname)s ; %(message)s")
stdout_handler.setFormatter(formatter)
logger.addHandler(stdout_handler)

Path Computation

from aequilibrae.paths import PathResults

We build all graphs

project.network.build_graphs()
We get warnings that several fields in the project are filled with NaNs.
This is true, but we won't use those fields.

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/network.py:327: FutureWarning: Downcasting object dtype arrays on .fillna, .
→˓ffill, .bfill is deprecated and will change in a future version. Call result.infer_
→˓objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option(
→˓'future.no_silent_downcasting', True)`
df = pd.read_sql(sql, conn).fillna(value=np.nan)

2024-08-19 06:15:30,746;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:15:30,831;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:15:30,933;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:15:31,034;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

26 Chapter 1. Examples

AequilibraE Documentation

We grab the graph for cars

graph = project.network.graphs["c"]

we also see what graphs are available
project.network.graphs.keys()

let's say we want to minimize the distance
graph.set_graph("distance")

And will skim time and distance while we are at it
graph.set_skimming(["travel_time", "distance"])

And we will allow paths to be computed going through other centroids/centroid␣
→˓connectors.
We recommend you to `be extremely careful` with this setting.
graph.set_blocked_centroid_flows(False)

Let’s instantiate a path results object and prepare it to work with the graph

res = PathResults()
res.prepare(graph)

compute a path from node 32343 to 22041, thats from near the airport to Fort Lambert,
a popular location due to its views of the Coquimbo bay.
res.compute_path(32343, 22041)

We can get the sequence of nodes we traverse
res.path_nodes

array([32343, 79778, 68225, 32487, 63937, 63192, 46510, 32380, 32373,
55817, 55816, 11982, 46516, 75015, 79704, 79785, 78576, 68242,
79144, 78635, 79784, 78748, 79082, 65861, 78343, 21311, 20312,
21308, 78834, 79862, 79450, 63873, 79458, 78986, 78884, 79152,
78645, 78549, 68503, 13380, 13383, 79199, 79745, 79457, 80001,
78217, 78093, 80013, 25130, 80012, 40633, 11010, 11009, 40846,
21827, 80056, 80055, 79481, 79486, 79485, 75142, 11448, 11446,
11445, 67684, 60645, 11447, 11422, 11420, 11421, 13723, 10851,
79462, 26681, 13718, 12079, 79460, 23707, 29778, 75451, 75445,
45342, 39399, 13626, 13627, 45379, 21384, 63812, 40005, 12207,
44243, 44241, 23405, 60002, 27114, 79431, 15148, 15146, 60000,
75486, 55963, 55958, 59043, 59050, 59988, 39402, 59017, 59019,
79398, 75520, 75516, 75512, 75509, 75505, 75511, 63544, 63543,
75510, 75515, 75476, 63539, 30138, 11695, 61061, 30148, 44192,
75556, 79364, 75534, 75552, 75548, 75321, 75532, 14802, 14823,
71435, 65497, 64708, 64709, 64712, 64713, 40374, 40375, 77308,
65518, 75566, 68526, 75573, 41306, 41308, 75619, 75617, 14899,
14875, 38674, 75595, 65067, 65068, 79508, 29452, 44797, 29447,
10065, 44798, 30552, 44783, 44808, 75612, 73617, 79653, 79651,
73620, 73923, 79820, 14864, 69009, 22040, 22041])

We can get the link sequence we traverse

1.7. Other Applications 27

AequilibraE Documentation

res.path

array([34709, 34710, 34711, 34712, 34713, 34714, 34715, 34716, 34717,
34718, 34719, 34720, 34721, 34722, 3321, 3322, 3323, 3324,
3325, 3326, 3327, 3328, 3329, 3330, 3331, 3332, 2970,
2971, 2969, 19995, 1434, 1435, 1436, 19326, 19327, 19328,
19329, 19330, 33674, 33675, 33676, 33677, 26525, 20765, 20746,
20747, 20748, 20749, 20750, 20751, 20752, 496, 497, 498,
499, 500, 501, 10380, 15408, 553, 552, 633, 634,
635, 630, 631, 632, 623, 624, 625, 626, 471,
5363, 34169, 34170, 34171, 34785, 6466, 6465, 29938, 29939,
29940, 29941, 1446, 1447, 1448, 1449, 1450, 939, 940,
941, 9840, 9841, 26314, 26313, 26312, 26311, 26310, 26309,

26308, 26307, 26306, 26305, 26304, 26303, 26302, 26301, 26300,
34079, 34147, 29962, 26422, 26421, 26420, 765, 764, 763,
762, 761, 760, 736, 10973, 10974, 10975, 725, 10972,
727, 728, 26424, 733, 734, 29899, 20970, 20969, 20968,

20967, 20966, 20965, 20964, 20963, 20962, 9584, 9583, 20981,
21398, 20982, 20983, 20984, 20985, 10030, 10031, 10032, 10033,
10034, 10035, 10036, 64, 65, 21260, 21261, 21262, 21263,
21264, 21265, 21266, 33, 11145, 11146, 71, 72, 34529,
34530, 34531, 28691, 28692, 28693, 3574])

We can get the mileposts for our sequence of nodes

res.milepost

array([0. , 161.94834565, 252.51996291, 390.08508135,
549.82648658, 561.81026027, 581.36871507, 593.21987605,
630.08836889, 1030.57121686, 1052.34444478, 1112.07906484,
1165.81004929, 1267.22602763, 1624.43103234, 1924.50863633,
1972.01917098, 2021.6997169 , 2062.34315111, 2109.67655695,
2155.98823775, 2196.91106309, 2221.69061004, 2249.01761535,
2298.72337036, 2363.21417492, 2375.9615406 , 2392.22488207,
2426.81462733, 2675.27978499, 3632.15818275, 3699.27505758,
3823.65932479, 3956.65040737, 4017.46560312, 4072.01402297,
4129.64308736, 4163.12532905, 4187.96101397, 4224.21499938,
4307.91646806, 4323.79479478, 4458.86701963, 4569.20833913,
4692.25740782, 4930.34266637, 4997.45500599, 5068.23739204,
5120.12897437, 5187.77254139, 5207.89952503, 5327.95612724,
5368.62533167, 5378.38940327, 5385.33334293, 5426.19568418,
5468.3231786 , 5523.97170089, 5548.40671886, 5559.07102378,
5592.3855075 , 5757.7535581 , 5923.39441593, 5950.82694781,
5956.69374937, 5982.88386915, 6047.00805103, 6254.07203583,
6284.94026694, 6297.98296824, 7047.68761904, 7322.48973364,
7410.01354224, 7554.81816989, 7654.30645223, 8000.95440184,
8009.6579379 , 8048.90437039, 8056.1819337 , 8230.32269321,
8476.75016293, 8620.89727688, 9010.45521832, 9274.61196368,
9280.12960244, 9383.74516275, 9496.88846171, 9711.90807592,
10093.92389013, 10097.37343293, 10098.79806269, 10100.74846208,
10158.97660612, 10308.02183308, 11038.25297634, 11043.82678472,
11184.07536528, 11241.90536698, 11251.4005022 , 11507.50220541,

(continues on next page)

28 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

11734.64237287, 11891.6028426 , 11914.05783947, 11931.91664218,
11955.2823231 , 12032.22401165, 12107.39910016, 12119.5125075 ,
12136.71574687, 12210.28469894, 12389.41094897, 12417.43348286,
12718.35052704, 12730.00818724, 12843.38553893, 12911.9429086 ,
12921.34664177, 13071.40008271, 13080.33320947, 13161.6119503 ,
13335.34223859, 13388.53619865, 13412.08272452, 13574.14596808,
13738.18613296, 13798.71647839, 14036.00947087, 14102.56840025,
14197.10918933, 14292.09203161, 14315.76699626, 14434.43917168,
14484.88708304, 14491.84542125, 14851.61908868, 14868.34527227,
14877.57764797, 15028.49457611, 15037.54620347, 15204.94094821,
15215.00009437, 15351.10413143, 15623.06737615, 15672.61684115,
15722.54738786, 15807.97421917, 15901.71819152, 15937.27964123,
16179.52060712, 16191.20903769, 16203.56934613, 16308.11327422,
16479.15664668, 16536.53372128, 16548.12481843, 16559.65540426,
16680.70266884, 16720.69837006, 16796.68692111, 16841.49843813,
16877.97092451, 16889.16327603, 16920.08515864, 16976.52291632,
17076.47607269, 17094.22058834, 17134.27959626, 17183.85951634,
17472.72121764, 17554.85677394, 17659.06248146, 17923.55576674,
17933.3892542 , 17942.66958063, 18164.10699022, 18421.89973826,
18597.64939792, 18599.05175306])

Additionally we could also provide early_exit=True or a_star=True to compute_path to adjust its path finding
behaviour. Providing early_exit=True will allow the path finding to quit once it’s discovered the destination, this
means it will perform better for ODs that are topographically close. However, exiting early may cause subsequent
calls to update_trace to recompute the tree in cases where it usually wouldn’t. a_star=True has precedence of
early_exit=True.

res.compute_path(32343, 22041, early_exit=True)

If you’d prefer to find a potentially non-optimal path to the destination faster provide a_star=True to use A* with a
heuristic. With this method update_trace will always recompute the path.

res.compute_path(32343, 22041, a_star=True)

By default a equirectangular heuristic is used. We can view the available heuristics via

res.get_heuristics()

['haversine', 'equirectangular']

If you’d like the more accurate, but slower, but more accurate haversine heuristic you can set it using

res.set_heuristic("haversine")

or

res.compute_path(32343, 22041, a_star=True, heuristic="haversine")

If we want to compute the path for a different destination and the same origin, we can just do this. It is way faster when
you have large networks. Here we’ll adjust our path to the University of La Serena. Our previous early exit and A*
settings will persist with calls to update_trace. If you’d like to adjust them for subsequent path re-computations set
the res.early_exit and res.a_star attributes.

1.7. Other Applications 29

AequilibraE Documentation

res.a_star = False
res.update_trace(73131)

res.path_nodes

array([32343, 79778, 68225, 32487, 63937, 63192, 46510, 32380, 32373,
55817, 55816, 11982, 46516, 75015, 79704, 79785, 78576, 68242,
79144, 78635, 79784, 78748, 79082, 65861, 78343, 21311, 20312,
21308, 78834, 79862, 79450, 63873, 79458, 78986, 78884, 79152,
78645, 78549, 68503, 13380, 13383, 79199, 79745, 79457, 80001,
78217, 78093, 80013, 25130, 80012, 40633, 11010, 11009, 40846,
21827, 80056, 80055, 79481, 79486, 79485, 75142, 11448, 11446,
11445, 67684, 60645, 11447, 11422, 11420, 11421, 13723, 10851,
79462, 26681, 13718, 12079, 79460, 23707, 29778, 75451, 75445,
45342, 39399, 13626, 13627, 45379, 21384, 63812, 40005, 12207,
44243, 44241, 23405, 60002, 27114, 79431, 15148, 15146, 60000,
75486, 55963, 55958, 59043, 59050, 59988, 39402, 59017, 59019,
79398, 75520, 75516, 75512, 75509, 75505, 75511, 63544, 63543,
75510, 75515, 75476, 63539, 30138, 11695, 61061, 30148, 44192,
75556, 79364, 75534, 75552, 75548, 75321, 75532, 14802, 14823,
71435, 65497, 64708, 64709, 64712, 64713, 40374, 40375, 77308,
65518, 75566, 68526, 79517, 51754, 77189, 65059, 10093, 65058,
30491, 66966, 66863, 30492, 77190, 77191, 79366, 77417, 79368,
77406, 77421, 77425, 77393, 77398, 53993, 77394, 70959, 77395,
27752, 65293, 73131])

If you want to show the path in Python.

We do NOT recommend this, though. . . It is very slow for real networks.

import matplotlib.pyplot as plt
from shapely.ops import linemerge

links = project.network.links

We plot the entire network
curr = project.conn.cursor()
curr.execute("Select link_id from links;")

for lid in curr.fetchall():
geo = links.get(lid[0]).geometry
plt.plot(*geo.xy, color="red")

path_geometry = linemerge(links.get(lid).geometry for lid in res.path)
plt.plot(*path_geometry.xy, color="blue", linestyle="dashed", linewidth=2)
plt.show()

30 Chapter 1. Examples

AequilibraE Documentation

project.close()

Total running time of the script: (1 minutes 24.087 seconds)

Trip Distribution

In this example, we calibrate a Synthetic Gravity Model that same model plus IPF (Fratar/Furness).

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example
import pandas as pd
import numpy as np

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr)

We get the demand matrix directly from the project record so let’s inspect what we have in the project

1.7. Other Applications 31

AequilibraE Documentation

proj_matrices = project.matrices
print(proj_matrices.list())

name file_name ... description status
0 demand_omx demand.omx ... Original data imported to OMX format
1 demand_mc demand_mc.omx ... None
2 skims skims.omx ... Example skim
3 demand_aem demand.aem ... Original data imported to AEM format

[4 rows x 8 columns]

We get the demand matrix

demand = proj_matrices.get_matrix("demand_omx")
demand.computational_view(["matrix"])

And the impedance

impedance = proj_matrices.get_matrix("skims")
impedance.computational_view(["time_final"])

Let’s have a function to plot the Trip Length Frequency Distribution

from math import log10, floor
import matplotlib.pyplot as plt

def plot_tlfd(demand, skim, name):
plt.clf()
b = floor(log10(skim.shape[0]) * 10)
n, bins, patches = plt.hist(

np.nan_to_num(skim.flatten(), 0),
bins=b,
weights=np.nan_to_num(demand.flatten()),
density=False,
facecolor="g",
alpha=0.75,

)

plt.xlabel("Trip length")
plt.ylabel("Probability")
plt.title("Trip-length frequency distribution")
plt.savefig(name, format="png")
return plt

from aequilibrae.distribution import GravityCalibration

for function in ["power", "expo"]:
gc = GravityCalibration(matrix=demand, impedance=impedance, function=function, nan_

→˓as_zero=True)
gc.calibrate()
model = gc.model
We save the model

(continues on next page)

32 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

model.save(join(fldr, f"{function}_model.mod"))

We can save an image for the resulting model
_ = plot_tlfd(gc.result_matrix.matrix_view, impedance.matrix_view, join(fldr, f"

→˓{function}_tfld.png"))

We can save the result of applying the model as well
We can also save the calibration report
with open(join(fldr, f"{function}_convergence.log"), "w") as otp:

for r in gc.report:
otp.write(r + "\n")

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/
→˓distribution/gravity_application.py:321: RuntimeWarning: divide by zero encountered in␣
→˓power
self.output.matrix_view[i, :] = (np.power(self.impedance.matrix_view[i, :], -self.

→˓model.alpha) * p * a)[
/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/
→˓distribution/gravity_application.py:335: RuntimeWarning: invalid value encountered in␣
→˓multiply
self.output.matrix_view[:, :] = self.output.matrix_view[:, :] * non_inf

We save a trip length frequency distribution for the demand itself

1.7. Other Applications 33

AequilibraE Documentation

plt = plot_tlfd(demand.matrix_view, impedance.matrix_view, join(fldr, "demand_tfld.png"))
plt.show()

Forecast

We create a set of ‘future’ vectors by applying some models and apply the model for both deterrence functions

from aequilibrae.distribution import Ipf, GravityApplication, SyntheticGravityModel
from aequilibrae.matrix import AequilibraeData
import numpy as np

zonal_data = pd.read_sql("Select zone_id, population, employment from zones order by␣
→˓zone_id", project.conn)

We compute the vectors from our matrix

args = {
"file_path": join(fldr, "synthetic_future_vector.aed"),
"entries": demand.zones,
"field_names": ["origins", "destinations"],
"data_types": [np.float64, np.float64],
"memory_mode": True,

(continues on next page)

34 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

}

vectors = AequilibraeData()
vectors.create_empty(**args)

vectors.index[:] = zonal_data.zone_id[:]

We apply a trivial regression-based model and balance the vectors
vectors.origins[:] = zonal_data.population[:] * 2.32
vectors.destinations[:] = zonal_data.employment[:] * 1.87
vectors.destinations *= vectors.origins.sum() / vectors.destinations.sum()

We simply apply the models to the same impedance matrix now

for function in ["power", "expo"]:
model = SyntheticGravityModel()
model.load(join(fldr, f"{function}_model.mod"))

outmatrix = join(proj_matrices.fldr, f"demand_{function}_model.aem")
args = {

"impedance": impedance,
"rows": vectors,
"row_field": "origins",
"model": model,
"columns": vectors,
"column_field": "destinations",
"nan_as_zero": True,

}

gravity = GravityApplication(**args)
gravity.apply()

We get the output matrix and save it to OMX too,
gravity.save_to_project(name=f"demand_{function}_model_omx", file_name=f"demand_

→˓{function}_model.omx")

We update the matrices table/records and verify that the new matrices are indeed there

proj_matrices.update_database()
print(proj_matrices.list())

name ... status
0 demand_omx ...
1 demand_mc ...
2 skims ...
3 demand_aem ...
4 demand_power_model_omx ...
5 demand_expo_model_omx ...

[6 rows x 8 columns]

We now run IPF for the future vectors

1.7. Other Applications 35

AequilibraE Documentation

args = {
"matrix": demand,
"rows": vectors,
"columns": vectors,
"column_field": "destinations",
"row_field": "origins",
"nan_as_zero": True,

}

ipf = Ipf(**args)
ipf.fit()

ipf.save_to_project(name="demand_ipf", file_name="demand_ipf.aem")
ipf.save_to_project(name="demand_ipf_omx", file_name="demand_ipf.omx")

<aequilibrae.project.data.matrix_record.MatrixRecord object at 0x7fa9072f0b80>

print(proj_matrices.list())

name ... status
0 demand_omx ...
1 demand_mc ...
2 skims ...
3 demand_aem ...
4 demand_power_model_omx ...
5 demand_expo_model_omx ...
6 demand_ipf ...
7 demand_ipf_omx ...

[8 rows x 8 columns]

project.close()

Total running time of the script: (0 minutes 1.388 seconds)

1.7.4 Visualization

Examples in this session allows the user to plot some data visualization.

Creating Delaunay Lines

In this example, we show how to create AequilibraE’s famous Delaunay Lines, but in Python.

For more on this topic, the first publication is here.

We use the Sioux Falls example once again.

Imports
import pandas as pd
from uuid import uuid4
from os.path import join

(continues on next page)

36 Chapter 1. Examples

https://xl-optim.com/delaunay/

AequilibraE Documentation

(continued from previous page)

import sqlite3
from tempfile import gettempdir
import matplotlib.pyplot as plt
import shapely.wkb

from aequilibrae.utils.create_example import create_example
from aequilibrae.utils.create_delaunay_network import DelaunayAnalysis

We create an empty project on an arbitrary folder

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr)

Get the Delaunay Lines generation class

da = DelaunayAnalysis(project)

Let's create the triangulation based on the zones, but we could create based on the␣
→˓network (centroids) too
da.create_network("zones")

Now we get the matrix we want and create the Delaunay Lines

demand = project.matrices.get_matrix("demand_omx")
demand.computational_view(["matrix"])

And we will call it ‘delaunay_test’./ It will also be saved in the results_database.sqlite

da.assign_matrix(demand, "delaunay_test")

we retrieve the results

conn = sqlite3.connect(join(fldr, "results_database.sqlite"))
results = pd.read_sql("Select * from delaunay_test", conn).set_index("link_id")

Now we get the matrix we want and create the Delaunay Lines

links = pd.read_sql("Select link_id, st_asBinary(geometry) geometry from delaunay_network
→˓", project.conn)
links.geometry = links.geometry.apply(shapely.wkb.loads)
links.set_index("link_id", inplace=True)

df = links.join(results)

max_vol = df.matrix_tot.max()

for idx, lnk in df.iterrows():
geo = lnk.geometry
plt.plot(*geo.xy, color="blue", linewidth=4 * lnk.matrix_tot / max_vol)

plt.show()

1.7. Other Applications 37

AequilibraE Documentation

Close the project

project.close()

Total running time of the script: (0 minutes 0.500 seconds)

Exploring the network on a notebook

In this example, we show how to use Folium to plot a network for different modes.

We will need Folium for this example, and we will focus on creating a layer for each mode in the network, a layer for
all links and a layer for all nodes.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example
import folium

We create an empty project on an arbitrary folder

fldr = join(gettempdir(), uuid4().hex)

Let’s use the Nauru example project for display

38 Chapter 1. Examples

AequilibraE Documentation

project = create_example(fldr, "nauru")

We grab all the links data as a Pandas dataframe so we can process it easier

links = project.network.links.data
nodes = project.network.nodes.data

We create our Folium layers

network_links = folium.FeatureGroup("links")
network_nodes = folium.FeatureGroup("nodes")
car = folium.FeatureGroup("Car")
walk = folium.FeatureGroup("Walk")
bike = folium.FeatureGroup("Bike")
transit = folium.FeatureGroup("Transit")
layers = [network_links, network_nodes, car, walk, bike, transit]

We do some Python magic to transform this dataset into the format required by Folium We are only getting link_id and
link_type into the map, but we could get other pieces of info as well

for i, row in links.iterrows():
points = row.geometry.wkt.replace("LINESTRING ", "").replace("(", "").replace(")", "

→˓").split(", ")
points = "[[" + "],[".join([p.replace(" ", ", ") for p in points]) + "]]"
we need to take from x/y to lat/long
points = [[x[1], x[0]] for x in eval(points)]

_ = folium.vector_layers.PolyLine(
points, popup=f"link_id: {row.link_id}", tooltip=f"{row.modes}", color=

→˓"gray", weight=2
).add_to(network_links)

if "w" in row.modes:
_ = folium.vector_layers.PolyLine(

points, popup=f"link_id: {row.link_id}", tooltip=f"{row.modes}",␣
→˓color="green", weight=4

).add_to(walk)

if "b" in row.modes:
_ = folium.vector_layers.PolyLine(

points, popup=f"link_id: {row.link_id}", tooltip=f"{row.modes}",␣
→˓color="green", weight=4

).add_to(bike)

if "c" in row.modes:
_ = folium.vector_layers.PolyLine(

points, popup=f"link_id: {row.link_id}", tooltip=f"{row.modes}",␣
→˓color="red", weight=4

).add_to(car)

if "t" in row.modes:
_ = folium.vector_layers.PolyLine(

points, popup=f"link_id: {row.link_id}", tooltip=f"{row.modes}",␣
(continues on next page)

1.7. Other Applications 39

AequilibraE Documentation

(continued from previous page)

→˓color="yellow", weight=4
).add_to(transit)

And now we get the nodes
for i, row in nodes.iterrows():

point = (row.geometry.y, row.geometry.x)

_ = folium.vector_layers.CircleMarker(
point,
popup=f"link_id: {row.node_id}",
tooltip=f"{row.modes}",
color="black",
radius=5,
fill=True,
fillColor="black",
fillOpacity=1.0,

).add_to(network_nodes)

We get the center of the region we are working with some SQL magic

curr = project.conn.cursor()
curr.execute("select avg(xmin), avg(ymin) from idx_links_geometry")
long, lat = curr.fetchone()

We create the map

map_osm = folium.Map(location=[lat, long], zoom_start=14)

add all layers
for layer in layers:

layer.add_to(map_osm)

And Add layer control before we display it
folium.LayerControl().add_to(map_osm)
map_osm

project.close()

Total running time of the script: (0 minutes 7.936 seconds)

1.7.5 AequilibraE without a Model

Traffic Assignment without an AequilibraE Model

In this example, we show how to perform Traffic Assignment in AequilibraE without a model.

We are using Sioux Falls data, from TNTP.

Imports
import os
import pandas as pd
import numpy as np

(continues on next page)

40 Chapter 1. Examples

https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls

AequilibraE Documentation

(continued from previous page)

from tempfile import gettempdir

from aequilibrae.matrix import AequilibraeMatrix
from aequilibrae.paths import Graph
from aequilibrae.paths import TrafficAssignment
from aequilibrae.paths.traffic_class import TrafficClass

We load the example file from the GMNS GitHub repository

net_file = "https://raw.githubusercontent.com/bstabler/TransportationNetworks/master/
→˓SiouxFalls/SiouxFalls_net.tntp"

demand_file = "https://raw.githubusercontent.com/bstabler/TransportationNetworks/master/
→˓SiouxFalls/CSV-data/SiouxFalls_od.csv"

geometry_file = "https://raw.githubusercontent.com/bstabler/TransportationNetworks/
→˓master/SiouxFalls/SiouxFalls_node.tntp"

Let’s use a temporary folder to store our data

folder = gettempdir()

First we load our demand file. This file has three columns: O, D, and Ton. O and D stand for origin and destination,
respectively, and Ton is the demand of each OD pair.

dem = pd.read_csv(demand_file)
zones = int(max(dem.O.max(), dem.D.max()))
index = np.arange(zones) + 1

Since our OD-matrix is in a different shape than we expect (for Sioux Falls, that would be a 24x24 matrix), we must
create our matrix.

mtx = np.zeros(shape=(zones, zones))
for element in dem.to_records(index=False):

mtx[element[0]-1][element[1]-1] = element[2]

Now let’s create an AequilibraE Matrix with out data

aemfile = os.path.join(folder, "demand.aem")
aem = AequilibraeMatrix()
kwargs = {'file_name': aemfile,

'zones': zones,
'matrix_names': ['matrix'],
"memory_only": False} # We'll save it to disk so we can use it later

aem.create_empty(**kwargs)
aem.matrix['matrix'][:,:] = mtx[:,:]
aem.index[:] = index[:]

Let’s import information about our network. As we’re loading data in TNTP format, we should do these manipulations.

net = pd.read_csv(net_file, skiprows=2, sep="\t", lineterminator=";", header=None)

(continues on next page)

1.7. Other Applications 41

AequilibraE Documentation

(continued from previous page)

net.columns = ["newline", "a_node", "b_node", "capacity", "length", "free_flow_time", "b
→˓", "power", "speed", "toll", "link_type", "terminator"]

net.drop(columns=["newline", "terminator"], index=[76], inplace=True)

network = net[['a_node', 'b_node', "capacity", 'free_flow_time', "b", "power"]]
network = network.assign(direction=1)
network["link_id"] = network.index + 1
network = network.astype({"a_node":"int64", "b_node": "int64"})

Now we’ll import the geometry (as lon/lat) for our network, this is required if you plan to use the A* path finding,
otherwise it can safely be skipped.

geom = pd.read_csv(geometry_file, skiprows=1, sep="\t", lineterminator=";", header=None)
geom.columns = ["newline", "lon", "lat", "terminator"]
geom.drop(columns=["newline", "terminator"], index=[24], inplace=True)
geom["node_id"] = geom.index + 1
geom = geom.astype({"node_id": "int64", "lon": "float64", "lat": "float64"}).set_index(
→˓"node_id")

Let’s build our Graph! In case you’re in doubt about AequilibraE Graph, click here to read more about it.

g = Graph()
g.cost = network['free_flow_time'].values
g.capacity = network['capacity'].values
g.free_flow_time = network['free_flow_time'].values

g.network = network
g.prepare_graph(index)
g.set_graph("free_flow_time")
g.cost = np.array(g.cost, copy=True)
g.set_skimming(["free_flow_time"])
g.set_blocked_centroid_flows(False)
g.network["id"] = g.network.link_id
g.lonlat_index = geom.loc[g.all_nodes]

Let’s perform our assignment. Feel free to try different algorithms, as well as change the maximum number of iterations
and the gap.

aem = AequilibraeMatrix()
aem.load(aemfile)
aem.computational_view(["matrix"])

assigclass = TrafficClass("car", g, aem)

assig = TrafficAssignment()

assig.set_classes([assigclass])
assig.set_vdf("BPR")
assig.set_vdf_parameters({"alpha": "b", "beta": "power"})
assig.set_capacity_field("capacity")
assig.set_time_field("free_flow_time")

(continues on next page)

42 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

assig.set_algorithm("fw")
assig.max_iter = 100
assig.rgap_target = 1e-6
assig.execute()

Now let’s take a look at the Assignment results

print(assig.results())

matrix_ab matrix_ba ... PCE_BA PCE_tot
link_id ...
1 4532.416460 NaN ... NaN 4532.416460
2 8124.962104 NaN ... NaN 8124.962104
3 4528.444976 NaN ... NaN 4528.444976
4 6001.323525 NaN ... NaN 6001.323525
5 8128.933588 NaN ... NaN 8128.933588
...
72 9643.868005 NaN ... NaN 9643.868005
73 7855.662507 NaN ... NaN 7855.662507
74 11101.449987 NaN ... NaN 11101.449987
75 10255.489839 NaN ... NaN 10255.489839
76 7923.866336 NaN ... NaN 7923.866336

[76 rows x 18 columns]

And at the Assignment report

print(assig.report())

iteration rgap alpha warnings
0 1 inf 1.000000
1 2 0.855131 0.328177
2 3 0.476738 0.186185
3 4 0.239622 0.229268
4 5 0.139851 0.314341
..
95 96 0.001999 0.011309
96 97 0.001431 0.006948
97 98 0.001405 0.014356
98 99 0.001814 0.012088
99 100 0.001577 0.007687

[100 rows x 4 columns]

Total running time of the script: (0 minutes 1.125 seconds)

1.7. Other Applications 43

AequilibraE Documentation

1.7.6 Assignment Workflows

Public transport assignment with Optimal Strategies

In this example, we import a GTFS feed to our model, create a public transport network, create project match connectors,
and perform a Spiess & Florian assignment.

We use data from Coquimbo, a city in La Serena Metropolitan Area in Chile.

Imports for example construction
from uuid import uuid4
from os import remove
from os.path import join
from tempfile import gettempdir

from aequilibrae.paths import TransitAssignment, TransitClass
from aequilibrae.utils.create_example import create_example
import numpy as np

Imports for GTFS import
from aequilibrae.transit import Transit

Imports for SF transit graph construction
from aequilibrae.project.database_connection import database_connection
from aequilibrae.transit.transit_graph_builder import TransitGraphBuilder

Let’s create an empty project on an arbitrary folder.

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr, "coquimbo")

As the Coquimbo example already has a complete GTFS model, we shall remove its public transport database for the
sake of this example.

remove(join(fldr, "public_transport.sqlite"))

Let’s import the GTFS feed.

dest_path = join(fldr, "gtfs_coquimbo.zip")

Now we create our Transit object and import the GTFS feed into our model. This will automatically create a new public
transport database.

data = Transit(project)

transit = data.new_gtfs_builder(agency="LISANCO", file_path=dest_path)

To load the data, we must choose one date. We’re going to continue with 2016-04-13 but feel free to experiment with
any other available dates. Transit class has a function allowing you to check dates for the GTFS feed. It should take
approximately 2 minutes to load the data.

transit.load_date("2016-04-13")

Let’s save this model for later use.

44 Chapter 1. Examples

AequilibraE Documentation

transit.save_to_disk()

Graph building

Let’s build the transit network. We’ll disable outer_stop_transfers and walking_edges because Coquimbo
doesn’t have any parent stations. For the OD connections we’ll use the overlapping_regions method and create
some accurate line geometry later. Creating the graph should only take a moment. By default zoning information is
pulled from the project network. If you have your own zoning information add it using graph.add_zones(zones)
then graph.create_graph(). We drop gemoetry here for the sake of display.

graph = data.create_graph(with_outer_stop_transfers=False, with_walking_edges=False,␣
→˓blocking_centroid_flows=False, connector_method="overlapping_regions")

graph.vertices.drop(columns="geometry")

graph.edges

The graphs also also stored in the Transit.graphs dictionary. They are keyed by the period_id they were created for.
A graph for a different period_id can be created by providing period_id= in the Transit.create_graph call. You
can view previously created periods with the Periods object.

periods = project.network.periods
periods.data

Connector project matching

project.network.build_graphs()

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/network.py:327: FutureWarning: Downcasting object dtype arrays on .fillna, .
→˓ffill, .bfill is deprecated and will change in a future version. Call result.infer_
→˓objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option(
→˓'future.no_silent_downcasting', True)`
df = pd.read_sql(sql, conn).fillna(value=np.nan)

Now we’ll create the line strings for the access connectors, this step is optinal but provides more accurate distance
estimations and better looking geometry. Because Coquimbo doesn’t have many walking edges we’ll match onto the
“c” graph.

graph.create_line_geometry(method="connector project match", graph="c")

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/transit/
→˓transit_graph_builder.py:1214: UserWarning: In its current implementation, the
→˓"connector project match" method may take a while for large networks.
warnings.warn(

1.7. Other Applications 45

AequilibraE Documentation

Saving and reloading

Lets save all graphs to the public_transport.sqlite database.

data.save_graphs()

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/transit/
→˓transit.py:91: UserWarning: Currently only a single transit graph can be saved and␣
→˓reloaded. Multiple graph support is plan for a future release.
warnings.warn(

We can reload the saved graphs with data.load. This will create new TransitGraphBuilder's based on the period_id of
the saved graphs. The graph configuration is stored in the transit_graph_config table in project_database.sqlite
as serialised JSON.

data.load()

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/transit/
→˓transit.py:105: UserWarning: Currently only a single transit graph can be saved and␣
→˓reloaded. Multiple graph support is plan for a future release. `period_ids` argument␣
→˓is currently ignored.
warnings.warn(

Links and nodes are stored in a similar manner to the project_database.sqlite database.

Reading back into AequilibraE

You can create back in a particular graph via it’s period_id.

pt_con = database_connection("transit")
graph_db = TransitGraphBuilder.from_db(pt_con, periods.default_period.period_id)
graph_db.vertices.drop(columns="geometry")

graph_db.edges

Converting to a AequilibraE graph object

To perform an assignment we need to convert the graph builder into a graph.

46 Chapter 1. Examples

AequilibraE Documentation

transit_graph = graph.to_transit_graph()

Spiess & Florian assignment

Mock demand matrix

We’ll create a mock demand matrix with demand 1 for every zone. We’ll also need to convert from zone_id 's to
node_id 's.

from aequilibrae.matrix import AequilibraeMatrix

zones_in_the_model = len(transit_graph.centroids)

names_list = ['pt']

mat = AequilibraeMatrix()
mat.create_empty(zones=zones_in_the_model,

matrix_names=names_list,
memory_only=True)

mat.index = transit_graph.centroids[:]
mat.matrices[:, :, 0] = np.full((zones_in_the_model, zones_in_the_model), 1.0)
mat.computational_view()

Hyperpath generation/assignment

We’ll create a TransitAssignment object as well as a TransitClass

assig = TransitAssignment()

Create the assignment class
assigclass = TransitClass(name="pt", graph=transit_graph, matrix=mat)
assig.add_class(assigclass)

We need to tell AequilbraE where to find the appropriate fields we want to use,
as well as the assignment algorithm to use.
assig.set_time_field("trav_time")
assig.set_frequency_field("freq")

assig.set_algorithm("os")

When there's multiple matrix cores we'll also need to set the core to use for the␣
→˓demand.
assigclass.set_demand_matrix_core("pt")

Let’s perform the assignment with the mock demand matrx for all TransitClass's added.

assig.execute()

View the results

1.7. Other Applications 47

AequilibraE Documentation

assig.results()

We can also access the TransitAssignmentResults object from the TransitClass

assigclass.results

<aequilibrae.paths.results.assignment_results.TransitAssignmentResults object at␣
→˓0x7fa8d0d5dd50>

Saving results

We’ll be saving the results to another sqlite db called results_database.sqlite. The results table with
project_database.sqlite contains some metadata about each table in results_database.sqlite.

assig.save_results(table_name='hyperpath example')

Wrapping up

project.close()

Total running time of the script: (0 minutes 11.919 seconds)

Route Choice set generation

In this example, we show how to generate route choice sets for estimation of route choice models, using a a city in La
Serena Metropolitan Area in Chile.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
import numpy as np
from aequilibrae.utils.create_example import create_example

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr, "coquimbo")

Choice set generation

od_pairs_of_interest = [(71645, 79385), (77011, 74089)]
nodes_of_interest = (71645, 74089, 77011, 79385)

Let’s build all graphs

project.network.build_graphs()
We get warnings that several fields in the project are filled with NaNs.
This is true, but we won't use those fields.

48 Chapter 1. Examples

AequilibraE Documentation

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/network.py:327: FutureWarning: Downcasting object dtype arrays on .fillna, .
→˓ffill, .bfill is deprecated and will change in a future version. Call result.infer_
→˓objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option(
→˓'future.no_silent_downcasting', True)`
df = pd.read_sql(sql, conn).fillna(value=np.nan)

We grab the graph for cars

graph = project.network.graphs["c"]

we also see what graphs are available
project.network.graphs.keys()

graph.set_graph("distance")

We set the nodes of interest as centroids to make sure they are not simplified away␣
→˓when we create the network
graph.prepare_graph(np.array(nodes_of_interest))

We allow flows through "centroid connectors" because our centroids are not really␣
→˓centroids
If we have actual centroid connectors in the network (and more than one per centroid) ,
→˓ then we
should remove them from the graph
graph.set_blocked_centroid_flows(False)

Route Choice class

Here we’ll construct and use the Route Choice class to generate our route sets

from aequilibrae.paths import RouteChoice

compressed link to network link mapping that’s required. This is a one time operation per graph and is cached. We need
to supply a Graph and an AequilibraeMatrix or DataFrame via the add_demand method , if demand is not provided
link loading cannot be preformed.

rc = RouteChoice(graph)

Here we’ll set the parameters of our set generation. There are two algorithms available: Link penalisation, and BFSLE
based on the paper “Route choice sets for very high-resolution data” by Nadine Rieser-Schüssler, Michael Balmer &
Kay W. Axhausen (2013). https://doi.org/10.1080/18128602.2012.671383

Our BFSLE implementation has been extended to allow applying link penalisation as well. Every link in all routes
found at a depth are penalised with the penalty factor for the next depth. So at a depth of 0 no links are penalised nor
removed. At depth 1, all links found at depth 0 are penalised, then the links marked for removal are removed. All links
in the routes found at depth 1 are then penalised for the next depth. The penalisation compounds. Pass set penalty=1.0
to disable.

It is highly recommended to set either max_routes or max_depth to prevent runaway results.

rc.set_choice_set_generation("link-penalisation", max_routes=5, penalty=1.02)

1.7. Other Applications 49

https://doi.org/10.1080/18128602.2012.671383

AequilibraE Documentation

The 5% penalty (1.05) is likely a little too large, but it create routes that are distinct enough to make this simple example
more interesting

rc.set_choice_set_generation("bfsle", max_routes=5, penalty=1.05)
rc.prepare(od_pairs_of_interest)
rc.execute(perform_assignment=True)
choice_set = rc.get_results().to_pandas()

Plotting choice sets

Now we will plot the paths we just created for the second OD pair

import folium
import geopandas as gpd

Let's create a separate for each route so we can visualize one at a time
rlyr1 = folium.FeatureGroup("route 1")
rlyr2 = folium.FeatureGroup("route 2")
rlyr3 = folium.FeatureGroup("route 3")
rlyr4 = folium.FeatureGroup("route 4")
rlyr5 = folium.FeatureGroup("route 5")
od_lyr = folium.FeatureGroup("Origin and Destination")
layers = [rlyr1, rlyr2, rlyr3, rlyr4, rlyr5]

We get the data we will use for the plot: Links, Nodes and the route choice set
links = gpd.GeoDataFrame(project.network.links.data, crs=4326)
nodes = gpd.GeoDataFrame(project.network.nodes.data, crs=4326)

plot_routes = choice_set[(choice_set["origin id"] == 77011)]["route set"].values

Let's create the layers
colors = ["red", "blue", "green", "purple", "orange"]
for i, route in enumerate(plot_routes):

rt = links[links.link_id.isin(route)]
routes_layer = layers[i]
for wkt in rt.geometry.to_wkt().values:

points = wkt.replace("LINESTRING ", "").replace("(", "").replace(")", "").split(
→˓", ")

points = "[[" + "],[".join([p.replace(" ", ", ") for p in points]) + "]]"
we need to take from x/y to lat/long
points = [[x[1], x[0]] for x in eval(points)]

_ = folium.vector_layers.PolyLine(points, color=colors[i], weight=4).add_
→˓to(routes_layer)

Creates the points for both origin and destination
for i, row in nodes[nodes.node_id.isin((77011, 74089))].iterrows():

point = (row.geometry.y, row.geometry.x)

_ = folium.vector_layers.CircleMarker(
point,
popup=f"link_id: {row.node_id}",

(continues on next page)

50 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

color="red",
radius=5,
fill=True,
fillColor="red",
fillOpacity=1.0,

).add_to(od_lyr)

It is worthwhile to notice that using distance as the cost function, the routes are not the fastest ones as the freeway does
not get used

Create the map and center it in the correct place

long, lat = project.conn.execute("select avg(xmin), avg(ymin) from idx_links_geometry").
→˓fetchone()

map_osm = folium.Map(location=[lat, long], tiles="Cartodb Positron", zoom_start=12)
for routes_layer in layers:

routes_layer.add_to(map_osm)
od_lyr.add_to(map_osm)
folium.LayerControl().add_to(map_osm)
map_osm

project.close()

Total running time of the script: (0 minutes 4.941 seconds)

Route Choice

In this example, we show how to perform route choice set generation using BFSLE and Link penalisation, for a city in
La Serena Metropolitan Area in Chile.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example

We create the example project inside our temp folder
fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr, "coquimbo")

import logging
import sys

We the project opens, we can tell the logger to direct all messages to the terminal as␣
→˓well
logger = project.logger
stdout_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(asctime)s;%(levelname)s ; %(message)s")
stdout_handler.setFormatter(formatter)
logger.addHandler(stdout_handler)

1.7. Other Applications 51

AequilibraE Documentation

Route Choice

import numpy as np

Model parameters

We’ll set the parameters for our route choice model. These are the parameters that will be used to calculate the utility
of each path. In our example, the utility is equal to theta * distance And the path overlap factor (PSL) is equal to beta.

Distance factor
theta = 0.00011

PSL parameter
beta = 1.1

Let’s build all graphs

project.network.build_graphs()
We get warnings that several fields in the project are filled with NaNs.
This is true, but we won't use those fields.

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/network.py:327: FutureWarning: Downcasting object dtype arrays on .fillna, .
→˓ffill, .bfill is deprecated and will change in a future version. Call result.infer_
→˓objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option(
→˓'future.no_silent_downcasting', True)`
df = pd.read_sql(sql, conn).fillna(value=np.nan)

2024-08-19 06:17:25,676;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:17:25,759;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:17:25,857;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:17:25,958;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

We grab the graph for cars

graph = project.network.graphs["c"]

We also see what graphs are available

project.network.graphs.keys()

od_pairs_of_interest = [(71645, 79385), (77011, 74089)]
nodes_of_interest = (71645, 74089, 77011, 79385)

let’s say that utility is just a function of distance So we build our utility field as the distance times theta

graph.network = graph.network.assign(utility=graph.network.distance * theta)

Prepare the graph with all nodes of interest as centroids

52 Chapter 1. Examples

AequilibraE Documentation

graph.prepare_graph(np.array(nodes_of_interest))

2024-08-19 06:17:26,036;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

And set the cost of the graph the as the utility field just created

graph.set_graph("utility")

We allow flows through “centroid connectors” because our centroids are not really centroids If we have actual centroid
connectors in the network (and more than one per centroid) , then we should remove them from the graph

graph.set_blocked_centroid_flows(False)

Mock demand matrix

We’ll create a mock demand matrix with demand 1 for every zone.

from aequilibrae.matrix import AequilibraeMatrix

names_list = ["demand", "5x demand"]

mat = AequilibraeMatrix()
mat.create_empty(zones=graph.num_zones, matrix_names=names_list, memory_only=True)
mat.index = graph.centroids[:]
mat.matrices[:, :, 0] = np.full((graph.num_zones, graph.num_zones), 10.0)
mat.matrices[:, :, 1] = np.full((graph.num_zones, graph.num_zones), 50.0)
mat.computational_view()

Route Choice class

Here we’ll construct and use the Route Choice class to generate our route sets

from aequilibrae.paths import RouteChoice

This object construct might take a minute depending on the size of the graph due to the construction of the compressed
link to network link mapping that’s required. This is a one time operation per graph and is cached. We need to supply
a Graph and an AequilibraeMatrix or DataFrame via the add_demand method , if demand is not provided link loading
cannot be preformed.

rc = RouteChoice(graph)
rc.add_demand(mat)

Here we’ll set the parameters of our set generation. There are two algorithms available: Link penalisation, or BFSLE
based on the paper “Route choice sets for very high-resolution data” by Nadine Rieser-Schüssler, Michael Balmer &
Kay W. Axhausen (2013). https://doi.org/10.1080/18128602.2012.671383

Our BFSLE implementation is slightly different and has extended to allow applying link penalisation as well. Every
link in all routes found at a depth are penalised with the penalty factor for the next depth. So at a depth of 0 no links
are penalised nor removed. At depth 1, all links found at depth 0 are penalised, then the links marked for removal are
removed. All links in the routes found at depth 1 are then penalised for the next depth. The penalisation compounds.
Pass set penalty=1.0 to disable.

1.7. Other Applications 53

https://doi.org/10.1080/18128602.2012.671383

AequilibraE Documentation

To assist in filtering out bad results during the assignment, a cutoff_prob parameter can be provided to exclude routes
from the path-sized logit model. The cutoff_prob is used to compute an inverse binary logit and obtain a max difference
in utilities. If a paths total cost is greater than the minimum cost path in the route set plus the max difference, the route
is excluded from the PSL calculations. The route is still returned, but with a probability of 0.0.

The cutoff_prob should be in the range [0, 1]. It is then rescaled internally to [0.5, 1] as probabilities below 0.5 produce
negative differences in utilities. A higher cutoff_prob includes more routes. A value of 0.0 will only include the
minimum cost route. A value of 1.0 includes all routes.

It is highly recommended to set either max_routes or max_depth to prevent runaway results.

rc.set_choice_set_generation(“link-penalisation”, max_routes=5, penalty=1.02)

rc.set_choice_set_generation("bfsle", max_routes=5)

All parameters are optional, the defaults are:

print(rc.default_parameters)

{'generic': {'seed': 0, 'max_routes': 0, 'max_depth': 0, 'max_misses': 100, 'penalty': 1.
→˓01, 'cutoff_prob': 0.0, 'beta': 1.0, 'store_results': True}, 'link-penalisation': {},
→˓'bfsle': {'penalty': 1.0}}

We can now perform a computation for single OD pair if we’d like. Here we do one between the first and last centroid
as well an an assignment.

results = rc.execute_single(77011, 74089, demand=1.0)
print(results[0])

(24222, 30332, 30333, 10435, 30068, 30069, 14198, 14199, 31161, 30928, 30929, 30930,␣
→˓30931, 24172, 30878, 30879, 30880, 30881, 30882, 30883, 30884, 30885, 30886, 30887,␣
→˓30888, 30889, 30890, 30891, 5179, 5180, 5181, 5182, 26463, 26462, 26461, 26460, 26459,␣
→˓26458, 26457, 26456, 26480, 3341, 3342, 3339, 9509, 9510, 9511, 9512, 18487, 14972,␣
→˓14973, 32692, 32693, 32694, 2300, 2301, 33715, 19978, 19979, 19977, 19976, 19975,␣
→˓19974, 19973, 19972, 19971, 19970, 22082, 22080, 5351, 5352, 2280, 2281, 2282, 575,␣
→˓576, 577, 578, 579, 536, 537, 538, 539, 540, 541, 15406, 15407, 15408, 553, 552, 633,␣
→˓634, 635, 630, 631, 632, 623, 624, 625, 626, 471, 5363, 34169, 34170, 34171, 34785,␣
→˓6466, 6465, 29938, 29939, 29940, 29941, 1446, 1447, 1448, 1449, 1450, 939, 940, 941,␣
→˓9840, 9841, 26314, 26313, 26312, 26311, 26310, 26309, 26308, 26307, 26306, 26305,␣
→˓26304, 26303, 26302, 26301, 26300, 34079, 34147, 29962, 26422, 26421, 26420, 765, 764,␣
→˓763, 762, 761, 760, 736, 10973, 10974, 10975, 725, 10972, 727, 728, 26424, 733, 734,␣
→˓29899, 20970, 20969, 20968, 20967, 20966, 20965, 20964, 20963, 20962, 9584, 9583,␣
→˓20981, 21398, 20982, 34208, 35, 36, 59, 60, 61, 22363, 22364, 22365, 22366, 22367,␣
→˓28958, 28959, 28960, 28961, 28962, 28805, 28806, 28807, 28808, 28809, 28810, 28827,␣
→˓28828, 28829, 28830, 28874)

Because we asked it to also perform an assignment we can access the various results from that The default return is a
Pyarrow Table but Pandas is nicer for viewing.

res = rc.get_results().to_pandas()
res.head()

let’s define a function to plot assignment results

54 Chapter 1. Examples

AequilibraE Documentation

def plot_results(link_loads):
import folium
import geopandas as gpd

link_loads = link_loads[link_loads.tot > 0]
max_load = link_loads["tot"].max()
links = gpd.GeoDataFrame(project.network.links.data, crs=4326)
loaded_links = links.merge(link_loads, on="link_id", how="inner")

loads_lyr = folium.FeatureGroup("link_loads")

Maximum thickness we would like is probably a 10, so let's make sure we don't go␣
→˓over that

factor = 10 / max_load

Let's create the layers
for _, rec in loaded_links.iterrows():

points = rec.geometry.wkt.replace("LINESTRING ", "").replace("(", "").replace(")
→˓", "").split(", ")

points = "[[" + "],[".join([p.replace(" ", ", ") for p in points]) + "]]"
we need to take from x/y to lat/long
points = [[x[1], x[0]] for x in eval(points)]
_ = folium.vector_layers.PolyLine(

points,
tooltip=f"link_id: {rec.link_id}, Flow: {rec.tot:.3f}",
color="red",
weight=factor * rec.tot,

).add_to(loads_lyr)
long, lat = project.conn.execute("select avg(xmin), avg(ymin) from idx_links_geometry

→˓").fetchone()

map_osm = folium.Map(location=[lat, long], tiles="Cartodb Positron", zoom_start=12)
loads_lyr.add_to(map_osm)
folium.LayerControl().add_to(map_osm)
return map_osm

plot_results(rc.get_load_results()["demand"])

To perform a batch operation we need to prepare the object first. We can either provide a list of tuple of the
OD pairs we’d like to use, or we can provided a 1D list and the generation will be run on all permutations.
rc.prepare(graph.centroids[:5])

rc.prepare()

Now we can perform a batch computation with an assignment

rc.execute(perform_assignment=True)
res = rc.get_results().to_pandas()
res.head()

Since we provided a matrix initially we can also perform link loading based on our assignment results.

rc.get_load_results()

1.7. Other Applications 55

AequilibraE Documentation

plot_results(rc.get_load_results()["demand"])

Select link analysis

We can also enable select link analysis by providing the links and the directions that we are interested in. Here we set
the select link to trigger when (7369, 1) and (20983, 1) is utilised in “sl1” and “sl2” when (7369, 1) is utilised.

rc.set_select_links({"sl1": [[(7369, 1), (20983, 1)]], "sl2": [[(7369, 1)]]})
rc.execute(perform_assignment=True)

We can get then the results in a Pandas data frame for both the network.

sl = rc.get_select_link_loading_results()
sl

We can also access the OD matrices for this link loading. These matrices are sparse and can be converted to scipy.sparse
matrices for ease of use. They’re stored in a dictionary where the key is the matrix name concatenated wit the select
link set name via an underscore. These matrices are constructed during get_select_link_loading_results.

rc.get_select_link_od_matrix_results()

{'sl1': {'demand': <aequilibrae.matrix.sparse_matrix.COO object at 0x7fa8dddc2c20>, '5x␣
→˓demand': <aequilibrae.matrix.sparse_matrix.COO object at 0x7fa8dddc3340>}, 'sl2': {
→˓'demand': <aequilibrae.matrix.sparse_matrix.COO object at 0x7fa8dddc1f60>, '5x demand
→˓': <aequilibrae.matrix.sparse_matrix.COO object at 0x7fa8dddc1600>}}

od_matrix = rc.get_select_link_od_matrix_results()["sl1"]["demand"]
od_matrix.to_scipy().toarray()

array([[0. , 0. , 0. , 3.04610785],
[0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0.]])

project.close()

INFO:aequilibrae:Closed project on /tmp/02423b8fe2eb473c9b82167cde97592f

Total running time of the script: (0 minutes 5.835 seconds)

Forecasting

In this example, we present a full forecasting workflow for the Sioux Falls example model.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example

(continues on next page)

56 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

import logging
import sys

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr)
logger = project.logger

Traffic assignment with skimming

from aequilibrae.paths import TrafficAssignment, TrafficClass

We build all graphs

project.network.build_graphs()
We get warnings that several fields in the project are filled with NaNs.
This is true, but we won't use those fields

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/network.py:327: FutureWarning: Downcasting object dtype arrays on .fillna, .
→˓ffill, .bfill is deprecated and will change in a future version. Call result.infer_
→˓objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option(
→˓'future.no_silent_downcasting', True)`
df = pd.read_sql(sql, conn).fillna(value=np.nan)

We grab the graph for cars

graph = project.network.graphs["c"]

Let's say we want to minimize the free_flow_time
graph.set_graph("free_flow_time")

And will skim time and distance while we are at it
graph.set_skimming(["free_flow_time", "distance"])

And we will allow paths to be computed going through other centroids/centroid␣
→˓connectors
required for the Sioux Falls network, as all nodes are centroids
graph.set_blocked_centroid_flows(False)

We get the demand matrix directly from the project record. So let’s inspect what we have in the project

proj_matrices = project.matrices
print(proj_matrices.list())

name file_name ... description status
0 demand_omx demand.omx ... Original data imported to OMX format
1 demand_mc demand_mc.omx ... None

(continues on next page)

1.7. Other Applications 57

AequilibraE Documentation

(continued from previous page)

2 skims skims.omx ... Example skim
3 demand_aem demand.aem ... Original data imported to AEM format

[4 rows x 8 columns]

Let’s get it in this better way

demand = proj_matrices.get_matrix("demand_omx")
demand.computational_view(["matrix"])

assig = TrafficAssignment()

Create the assignment class
assigclass = TrafficClass(name="car", graph=graph, matrix=demand)

The first thing to do is to add at list of traffic classes to be assigned
assig.add_class(assigclass)

We set these parameters only after adding one class to the assignment
assig.set_vdf("BPR") # This is not case-sensitive

Then we set the volume delay function
assig.set_vdf_parameters({"alpha": "b", "beta": "power"}) # And its parameters

assig.set_capacity_field("capacity") # The capacity and free flow travel times as they␣
→˓exist in the graph
assig.set_time_field("free_flow_time")

And the algorithm we want to use to assign
assig.set_algorithm("bfw")

Since I haven't checked the parameters file, let's make sure convergence criteria is␣
→˓good
assig.max_iter = 1000
assig.rgap_target = 0.001

assig.execute() # we then execute the assignment

Convergence report is easy to see

import pandas as pd

convergence_report = assig.report()
print(convergence_report.head())

iteration rgap alpha warnings beta0 beta1 beta2
0 1 inf 1.000000 1.000000 0.000000 0.0
1 2 0.855075 0.328400 1.000000 0.000000 0.0
2 3 0.476346 0.186602 1.000000 0.000000 0.0
3 4 0.235513 0.241148 1.000000 0.000000 0.0
4 5 0.109241 0.818547 0.607382 0.392618 0.0

58 Chapter 1. Examples

AequilibraE Documentation

volumes = assig.results()
print(volumes.head())

matrix_ab matrix_ba matrix_tot ... PCE_AB PCE_BA PCE_tot
link_id ...
1 4502.545113 NaN 4502.545113 ... 4502.545113 NaN 4502.545113
2 8222.240524 NaN 8222.240524 ... 8222.240524 NaN 8222.240524
3 4622.925028 NaN 4622.925028 ... 4622.925028 NaN 4622.925028
4 5897.692905 NaN 5897.692905 ... 5897.692905 NaN 5897.692905
5 8101.860609 NaN 8101.860609 ... 8101.860609 NaN 8101.860609

[5 rows x 18 columns]

We could export it to CSV or AequilibraE data, but let’s put it directly into the results database

assig.save_results("base_year_assignment")

And save the skims

assig.save_skims("base_year_assignment_skims", which_ones="all", format="omx")

Trip distribution

Calibration

We will calibrate synthetic gravity models using the skims for TIME that we just generated

import numpy as np
from aequilibrae.distribution import GravityCalibration

Let’s take another look at what we have in terms of matrices in the model

print(proj_matrices.list())

name ... status
0 demand_omx ...
1 demand_mc ...
2 skims ...
3 demand_aem ...
4 base_year_assignment_skims_car ...

[5 rows x 8 columns]

We need the demand

demand = proj_matrices.get_matrix("demand_aem")

And the skims

imped = proj_matrices.get_matrix("base_year_assignment_skims_car")

We can check which matrix cores were created for our skims to decide which one to use

1.7. Other Applications 59

AequilibraE Documentation

imped.names

['distance_blended', 'distance_final', 'free_flow_time_blended', 'free_flow_time_final']

Where free_flow_time_final is actually the congested time for the last iteration

But before using the data, let’s get some impedance for the intrazonals. Let’s assume it is 75% of the closest zone.

imped_core = "free_flow_time_final"
imped.computational_view([imped_core])

If we run the code below more than once, we will be overwriting the diagonal values␣
→˓with non-sensical data
so let's zero it first
np.fill_diagonal(imped.matrix_view, 0)

We compute it with a little bit of NumPy magic
intrazonals = np.amin(imped.matrix_view, where=imped.matrix_view > 0, initial=imped.
→˓matrix_view.max(), axis=1)
intrazonals *= 0.75

Then we fill in the impedance matrix
np.fill_diagonal(imped.matrix_view, intrazonals)

Since we are working with an OMX file, we cannot overwrite a matrix on disk So we give a new name to save it

imped.save(names=["final_time_with_intrazonals"])

This also updates these new matrices as those being used for computation as one can verify below

imped.view_names

['final_time_with_intrazonals']

We set the matrices for being used in computation

demand.computational_view(["matrix"])

for function in ["power", "expo"]:
gc = GravityCalibration(matrix=demand, impedance=imped, function=function, nan_as_

→˓zero=True)
gc.calibrate()
model = gc.model
We save the model
model.save(join(fldr, f"{function}_model.mod"))

We can save the result of applying the model as well
We can also save the calibration report
with open(join(fldr, f"{function}_convergence.log"), "w") as otp:

for r in gc.report:
otp.write(r + "\n")

60 Chapter 1. Examples

AequilibraE Documentation

Forecast

We create a set of ‘future’ vectors using some random growth factors. We apply the model for inverse power, as the
trip frequency length distribution (TFLD) seems to be a better fit for the actual one.

from aequilibrae.distribution import Ipf, GravityApplication, SyntheticGravityModel
from aequilibrae.matrix import AequilibraeData

We compute the vectors from our matrix

origins = np.sum(demand.matrix_view, axis=1)
destinations = np.sum(demand.matrix_view, axis=0)

args = {
"file_path": join(fldr, "synthetic_future_vector.aed"),
"entries": demand.zones,
"field_names": ["origins", "destinations"],
"data_types": [np.float64, np.float64],
"memory_mode": False,

}

vectors = AequilibraeData()
vectors.create_empty(**args)

vectors.index[:] = demand.index[:]

Then grow them with some random growth between 0 and 10%, and balance them
vectors.origins[:] = origins * (1 + np.random.rand(vectors.entries) / 10)
vectors.destinations[:] = destinations * (1 + np.random.rand(vectors.entries) / 10)
vectors.destinations *= vectors.origins.sum() / vectors.destinations.sum()

Impedance

imped = proj_matrices.get_matrix("base_year_assignment_skims_car")
imped.computational_view(["final_time_with_intrazonals"])

If we wanted the main diagonal to not be considered. . .

np.fill_diagonal(imped.matrix_view, np.nan)

for function in ["power", "expo"]:
model = SyntheticGravityModel()
model.load(join(fldr, f"{function}_model.mod"))

outmatrix = join(proj_matrices.fldr, f"demand_{function}_model.aem")
args = {

"impedance": imped,
"rows": vectors,
"row_field": "origins",
"model": model,
"columns": vectors,

(continues on next page)

1.7. Other Applications 61

AequilibraE Documentation

(continued from previous page)

"column_field": "destinations",
"nan_as_zero": True,

}

gravity = GravityApplication(**args)
gravity.apply()

We get the output matrix and save it to OMX too,
gravity.save_to_project(name=f"demand_{function}_modeled", file_name=f"demand_

→˓{function}_modeled.omx")

We update the matrices table/records and verify that the new matrices are indeed there

proj_matrices.update_database()
print(proj_matrices.list())

name ... status
0 demand_omx ...
1 demand_mc ...
2 skims ...
3 demand_aem ...
4 base_year_assignment_skims_car ...
5 demand_power_modeled ...
6 demand_expo_modeled ...

[7 rows x 8 columns]

IPF for the future vectors

args = {
"matrix": demand,
"rows": vectors,
"columns": vectors,
"column_field": "destinations",
"row_field": "origins",
"nan_as_zero": True,

}

ipf = Ipf(**args)
ipf.fit()

ipf.save_to_project(name="demand_ipfd", file_name="demand_ipfd.aem")
ipf.save_to_project(name="demand_ipfd_omx", file_name="demand_ipfd.omx")

<aequilibrae.project.data.matrix_record.MatrixRecord object at 0x7fa8dd5da950>

df = proj_matrices.list()

62 Chapter 1. Examples

AequilibraE Documentation

Future traffic assignment

from aequilibrae.paths import TrafficAssignment, TrafficClass

logger.info("\n\n\n TRAFFIC ASSIGNMENT FOR FUTURE YEAR")

demand = proj_matrices.get_matrix("demand_ipfd")

Let's see what is the core we ended up getting. It should be 'gravity'
demand.names

['matrix']

Let’s use the IPF matrix

demand.computational_view("matrix")

assig = TrafficAssignment()

Creates the assignment class
assigclass = TrafficClass(name="car", graph=graph, matrix=demand)

The first thing to do is to add at a list of traffic classes to be assigned
assig.add_class(assigclass)

assig.set_vdf("BPR") # This is not case-sensitive

Then we set the volume delay function
assig.set_vdf_parameters({"alpha": "b", "beta": "power"}) # And its parameters

assig.set_capacity_field("capacity") # The capacity and free flow travel times as they␣
→˓exist in the graph
assig.set_time_field("free_flow_time")

And the algorithm we want to use to assign
assig.set_algorithm("bfw")

Since I haven't checked the parameters file, let's make sure convergence criteria is␣
→˓good
assig.max_iter = 500
assig.rgap_target = 0.00001

1.7. Other Applications 63

AequilibraE Documentation

Optional: Select link analysis

If we want to execute select link analysis on a particular TrafficClass, we set the links we are analyzing. The format
of the input select links is a dictionary (str: list[tuple]). Each entry represents a separate set of selected
links to compute. The str name will name the set of links. The list[tuple] is the list of links being selected, of the form
(link_id, direction), as it occurs in the Graph. Direction can be 0, 1, -1. 0 denotes bi-directionality For example, let’s
use Select Link on two sets of links:

select_links = {
"Leaving node 1": [(1, 1), (2, 1)],
"Random nodes": [(3, 1), (5, 1)],

}

We call this command on the class we are analyzing with our dictionary of values

assigclass.set_select_links(select_links)

assig.execute() # we then execute the assignment

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/paths/
→˓traffic_class.py:167: UserWarning: Input string name has a space in it. Replacing with␣
→˓_
warnings.warn("Input string name has a space in it. Replacing with _")

Now let us save our select link results, all we need to do is provide it with a name In addition to exporting the select
link flows, it also exports the Select Link matrices in OMX format.

assig.save_select_link_results("select_link_analysis")

Say we just want to save our select link flows, we can call:

assig.save_select_link_flows("just_flows")

Or if we just want the SL matrices:
assig.save_select_link_matrices("just_matrices")
Internally, the save_select_link_results calls both of these methods at once.

We could export it to CSV or AequilibraE data, but let’s put it directly into the results database

assig.save_results("future_year_assignment")

And save the skims

assig.save_skims("future_year_assignment_skims", which_ones="all", format="omx")

64 Chapter 1. Examples

AequilibraE Documentation

We can also plot convergence

import matplotlib.pyplot as plt

df = assig.report()
x = df.iteration.values
y = df.rgap.values

fig = plt.figure()
ax = fig.add_subplot(111)

plt.plot(x, y, "k--")
plt.yscale("log")
plt.grid(True, which="both")
plt.xlabel(r"Iterations")
plt.ylabel(r"Relative Gap")
plt.show()

Close the project

project.close()

Total running time of the script: (0 minutes 3.465 seconds)

1.7. Other Applications 65

AequilibraE Documentation

Route Choice with sub-area analysis

In this example, we show how to perform sub-area analysis using route choice assignment, for a city in La Serena
Metropolitan Area in Chile.

Imports

from uuid import uuid4
from tempfile import gettempdir
from os.path import join
import itertools

import pandas as pd
import geopandas as gpd
import numpy as np
import folium

from aequilibrae.utils.create_example import create_example

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr, "coquimbo")

import logging
import sys

We the project opens, we can tell the logger to direct all messages to the terminal as␣
→˓well
logger = project.logger
stdout_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(asctime)s;%(levelname)s ; %(message)s")
stdout_handler.setFormatter(formatter)
logger.addHandler(stdout_handler)

Route Choice

Model parameters

We’ll set the parameters for our route choice model. These are the parameters that will be used to calculate the utility
of each path. In our example, the utility is equal to theta * distance And the path overlap factor (PSL) is equal to beta.

Distance factor
theta = 0.011

PSL parameter
beta = 1.1

Let’s build all graphs

66 Chapter 1. Examples

AequilibraE Documentation

project.network.build_graphs()
We get warnings that several fields in the project are filled with NaNs.
This is true, but we won't use those fields.

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/network.py:327: FutureWarning: Downcasting object dtype arrays on .fillna, .
→˓ffill, .bfill is deprecated and will change in a future version. Call result.infer_
→˓objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option(
→˓'future.no_silent_downcasting', True)`
df = pd.read_sql(sql, conn).fillna(value=np.nan)

2024-08-19 06:17:35,300;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:17:35,386;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:17:35,486;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:17:35,582;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

We grab the graph for cars

graph = project.network.graphs["c"]

We also see what graphs are available

project.network.graphs.keys()

dict_keys(['b', 'c', 't', 'w'])

let’s say that utility is just a function of distance So we build our utility field as the distance times theta

graph.network = graph.network.assign(utility=graph.network.distance * theta)

Prepare the graph with all nodes of interest as centroids

graph.prepare_graph(graph.centroids)

2024-08-19 06:17:35,656;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

And set the cost of the graph the as the utility field just created

graph.set_graph("utility")

We allow flows through “centroid connectors” because our centroids are not really centroids If we have actual centroid
connectors in the network (and more than one per centroid) , then we should remove them from the graph

graph.set_blocked_centroid_flows(False)
graph.graph.head()

1.7. Other Applications 67

AequilibraE Documentation

Mock demand matrix

We’ll create a mock demand matrix with demand 10 for every zone.

from aequilibrae.matrix import AequilibraeMatrix

names_list = ["demand"]

mat = AequilibraeMatrix()
mat.create_empty(zones=graph.num_zones, matrix_names=names_list, memory_only=True)
mat.index = graph.centroids[:]
mat.matrices[:, :, 0] = np.full((graph.num_zones, graph.num_zones), 10.0)
mat.computational_view()

Sub-area preparation

We need to define some polygon for out sub-area analysis, here we’ll use a section of zones and create out polygon as
the union of their geometry. It’s best to choose a polygon that avoids any unnecessary intersections with links as the
resource requirements of this approach grow quadratically with the number of links cut.

zones_of_interest = [29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 49, 50, 51, 52, 57, 58, 59,␣
→˓60]
zones = gpd.GeoDataFrame(project.zoning.data).set_index("zone_id")
zones = zones.loc[zones_of_interest]
zones.head()

Sub-area analysis

From here there are two main paths to conduct a sub-area analysis, manual or automated.
→˓ AequilibraE ships with a small
class that handle most of the details regarding the implementation and extract of the␣
→˓relevant data. It also exposes
all the tools necessary to conduct this analysis yourself if you need fine grained␣
→˓control.

Automated sub-area analysis

We first construct out SubAreaAnalysis object from the graph, zones, and matrix we␣
→˓previously constructed, then
configure the route choice assignment and execute it. From there the `post_process`␣
→˓method is able to use the route
choice assignment results to construct the desired demand matrix as a DataFrame.
from aequilibrae.paths import SubAreaAnalysis

subarea = SubAreaAnalysis(graph, zones, mat)
subarea.rc.set_choice_set_generation("lp", max_routes=5, penalty=1.02, store_
→˓results=False)
subarea.rc.execute(perform_assignment=True)

(continues on next page)

68 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

demand = subarea.post_process()
demand

2024-08-19 06:17:36,419;INFO ; Created: 650 edge pairs from 26 edges
/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/paths/
→˓route_choice.py:451: UserWarning: Two input links map to the same compressed link in␣
→˓the network, removing superfluous link 31425 and direction -1 with compressed id 9483
warnings.warn(

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/paths/
→˓route_choice.py:451: UserWarning: Two input links map to the same compressed link in␣
→˓the network, removing superfluous link 31425 and direction 1 with compressed id 14421
warnings.warn(

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/paths/
→˓route_choice.py:451: UserWarning: Two input links map to the same compressed link in␣
→˓the network, removing superfluous link 21724 and direction 1 with compressed id 14421
warnings.warn(

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/paths/
→˓route_choice.py:451: UserWarning: Two input links map to the same compressed link in␣
→˓the network, removing superfluous link 21724 and direction -1 with compressed id 9483
warnings.warn(

We’ll re-prepare our graph but with our new “external” ODs.

new_centroids = np.unique(demand.reset_index()[["origin id", "destination id"]].to_
→˓numpy().reshape(-1))
graph.prepare_graph(new_centroids)
graph.set_graph("utility")
new_centroids

2024-08-19 06:17:58,250;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

array([29, 30, 31, 32, 33, 34, 37, 38, 39,
40, 49, 50, 51, 52, 57, 58, 59, 60,

61044, 67891, 68671, 72081, 72092, 72096, 72134, 72161, 73381,
73394, 73432, 73506, 73541, 73565, 73589, 75548, 77285, 77287,
77289, 79297, 79892])

We can then perform an assignment using our new demand matrix on the limited graph

from aequilibrae.paths import RouteChoice

rc = RouteChoice(graph)
rc.add_demand(demand)
rc.set_choice_set_generation("link-penalisation", max_routes=5, penalty=1.02, store_
→˓results=False, seed=123)
rc.execute(perform_assignment=True)

And plot the link loads for easy viewing

subarea_zone = folium.Polygon(
locations=[(x[1], x[0]) for x in zones.unary_union.boundary.coords],

(continues on next page)

1.7. Other Applications 69

AequilibraE Documentation

(continued from previous page)

fill_color="blue",
fill_opacity=0.5,
fill=True,
stroke=False,

)

def plot_results(link_loads):
link_loads = link_loads[link_loads.tot > 0]
max_load = link_loads["tot"].max()
links = gpd.GeoDataFrame(project.network.links.data, crs=4326)
loaded_links = links.merge(link_loads, on="link_id", how="inner")

loads_lyr = folium.FeatureGroup("link_loads")

Maximum thickness we would like is probably a 10, so let's make sure we don't go␣
→˓over that

factor = 10 / max_load

Let's create the layers
for _, rec in loaded_links.iterrows():

points = rec.geometry.wkt.replace("LINESTRING ", "").replace("(", "").replace(")
→˓", "").split(", ")

points = "[[" + "],[".join([p.replace(" ", ", ") for p in points]) + "]]"
we need to take from x/y to lat/long
points = [[x[1], x[0]] for x in eval(points)]
_ = folium.vector_layers.PolyLine(

points,
tooltip=f"link_id: {rec.link_id}, Flow: {rec.tot:.3f}",
color="red",
weight=factor * rec.tot,

).add_to(loads_lyr)
long, lat = project.conn.execute("select avg(xmin), avg(ymin) from idx_links_geometry

→˓").fetchone()

map_osm = folium.Map(location=[lat, long], tiles="Cartodb Positron", zoom_start=12)
loads_lyr.add_to(map_osm)
folium.LayerControl().add_to(map_osm)
return map_osm

map = plot_results(rc.get_load_results()["demand"])
subarea_zone.add_to(map)
map

/home/runner/work/aequilibrae/aequilibrae/docs/source/examples/assignment_workflows/plot_
→˓subarea_analysis.py:161: DeprecationWarning: The 'unary_union' attribute is deprecated,
→˓ use the 'union_all()' method instead.
locations=[(x[1], x[0]) for x in zones.unary_union.boundary.coords],

70 Chapter 1. Examples

AequilibraE Documentation

Manual sub-area analysis further preparation

%% We take the union of this GeoDataFrame as our polygon.

poly = zones.unary_union
poly

/home/runner/work/aequilibrae/aequilibrae/docs/source/examples/assignment_workflows/plot_
→˓subarea_analysis.py:209: DeprecationWarning: The 'unary_union' attribute is deprecated,
→˓ use the 'union_all()' method instead.
poly = zones.unary_union

<POLYGON ((-71.348 -29.993, -71.349 -29.993, -71.35 -29.992, -71.349 -29.991...>

It’s useful later on to know which links from the network cross our polygon.

links = gpd.GeoDataFrame(project.network.links.data)
inner_links = links[links.crosses(poly.boundary)].sort_index()
inner_links.head()

As well as which nodes are interior.

nodes = gpd.GeoDataFrame(project.network.nodes.data).set_index("node_id")
inside_nodes = nodes.sjoin(zones, how="inner").sort_index()
inside_nodes.head()

Here we filter those network links to graph links, dropping any dead ends and creating a link_id, dir multi-index.

g = (
graph.graph.set_index("link_id")
.loc[inner_links.link_id]
.drop(graph.dead_end_links, errors="ignore")
.reset_index()
.set_index(["link_id", "direction"])

)
g.head()

Sub-area visualisation

Here we’ll quickly visualise what out sub-area is looking like. We’ll plot the polygon from our zoning system and the
links that it cuts.

points = [(link_id, list(x.coords)) for link_id, x in zip(inner_links.link_id, inner_
→˓links.geometry)]
subarea_layer = folium.FeatureGroup("Cut links")

for link_id, line in points:
_ = folium.vector_layers.PolyLine(

[(x[1], x[0]) for x in line],
tooltip=f"link_id: {link_id}",
color="red",

).add_to(subarea_layer)
(continues on next page)

1.7. Other Applications 71

AequilibraE Documentation

(continued from previous page)

long, lat = project.conn.execute("select avg(xmin), avg(ymin) from idx_links_geometry").
→˓fetchone()

map_osm = folium.Map(location=[lat, long], tiles="Cartodb Positron", zoom_start=12)

subarea_zone.add_to(map_osm)

subarea_layer.add_to(map_osm)
_ = folium.LayerControl().add_to(map_osm)
map_osm

Manual sub-area analysis

In order to perform out analysis we need to know what OD pairs have flow that enters and/or exists our polygon. To do
so we perform a select link analysis on all links and pairs of links that cross the boundary. We create them as tuples of
tuples to make represent the select link AND sets.

edge_pairs = {x: (x,) for x in itertools.permutations(g.index, r=2)}
single_edges = {x: ((x,),) for x in g.index}
f"Created: {len(edge_pairs)} edge pairs from {len(single_edges)} edges"

'Created: 650 edge pairs from 26 edges'

Here we’ll construct and use the Route Choice class to generate our route sets

from aequilibrae.paths import RouteChoice

We’ll re-prepare out graph quickly

project.network.build_graphs()
graph = project.network.graphs["c"]
graph.network = graph.network.assign(utility=graph.network.distance * theta)
graph.prepare_graph(graph.centroids)
graph.set_graph("utility")
graph.set_blocked_centroid_flows(False)

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/network.py:327: FutureWarning: Downcasting object dtype arrays on .fillna, .
→˓ffill, .bfill is deprecated and will change in a future version. Call result.infer_
→˓objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option(
→˓'future.no_silent_downcasting', True)`
df = pd.read_sql(sql, conn).fillna(value=np.nan)

2024-08-19 06:18:05,302;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:18:05,384;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:18:05,484;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations
2024-08-19 06:18:05,580;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

(continues on next page)

72 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

2024-08-19 06:18:05,653;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

This object construction might take a minute depending on the size of the graph due to the construction of the com-
pressed link to network link mapping that’s required. This is a one time operation per graph and is cached. We need to
supply a Graph and an AequilibraeMatrix or DataFrame via the add_demand method , if demand is not provided link
loading cannot be preformed.

rc = RouteChoice(graph)
rc.add_demand(mat)

Here we add the union of edges as select link sets.

rc.set_select_links(single_edges | edge_pairs)

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/paths/
→˓route_choice.py:451: UserWarning: Two input links map to the same compressed link in␣
→˓the network, removing superfluous link 31425 and direction -1 with compressed id 9483
warnings.warn(

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/paths/
→˓route_choice.py:451: UserWarning: Two input links map to the same compressed link in␣
→˓the network, removing superfluous link 31425 and direction 1 with compressed id 14421
warnings.warn(

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/paths/
→˓route_choice.py:451: UserWarning: Two input links map to the same compressed link in␣
→˓the network, removing superfluous link 21724 and direction 1 with compressed id 14421
warnings.warn(

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/paths/
→˓route_choice.py:451: UserWarning: Two input links map to the same compressed link in␣
→˓the network, removing superfluous link 21724 and direction -1 with compressed id 9483
warnings.warn(

For the sake of demonstration we limit out demand matrix to a few OD pairs. This filter is also possible with the
automated approach, just edit the subarea.rc.demand.df DataFrame, however make sure the index remains intact.

ods_pairs_of_interest = [
(4, 39),
(92, 37),
(31, 58),
(4, 19),
(39, 34),

]
ods_pairs_of_interest = ods_pairs_of_interest + [(x[1], x[0]) for x in ods_pairs_of_
→˓interest]
rc.demand.df = rc.demand.df.loc[ods_pairs_of_interest].sort_index().astype(np.float32)
rc.demand.df

Perform the assignment

rc.set_choice_set_generation("link-penalisation", max_routes=5, penalty=1.02, store_
→˓results=False, seed=123)
rc.execute(perform_assignment=True)

1.7. Other Applications 73

AequilibraE Documentation

We can visualise the current links loads

map = plot_results(rc.get_load_results()["demand"])
subarea_zone.add_to(map)
map

We’ll pull out just OD matrix results as well we need it for the post-processing, we’ll also convert the sparse matrices
to SciPy COO matrices.

sl_od = rc.get_select_link_od_matrix_results()
edge_totals = {k: sl_od[k]["demand"].to_scipy() for k in single_edges}
edge_pair_values = {k: sl_od[k]["demand"].to_scipy() for k in edge_pairs}

For the post processing, we are interested in the demand of OD pairs that enter or exit the sub-area, or do both. For the
single enters and exists we can extract that information from the single link select link results. We also need to map the
links that cross the boundary to the origin/destination node and the node that appears on the outside of the sub-area.

from collections import defaultdict

entered = defaultdict(float)
exited = defaultdict(float)
for (link_id, dir), v in edge_totals.items():

link = g.loc[link_id, dir]
for (o, d), load in v.todok().items():

o = graph.all_nodes[o]
d = graph.all_nodes[d]

o_inside = o in inside_nodes.index
d_inside = d in inside_nodes.index

if o_inside and not d_inside:
exited[o, graph.all_nodes[link.b_node]] += load

elif not o_inside and d_inside:
entered[graph.all_nodes[link.a_node], d] += load

elif not o_inside and not d_inside:
pass

Here he have the load that entered the sub-area

entered

defaultdict(<class 'float'>, {(34, 37): 10.0, (20, 39): 9.88913345336914, (23, 39): 0.
→˓1108664870262146})

and the load that exited the sub-area

exited

defaultdict(<class 'float'>, {(39, 20): 9.873265266418457, (37, 36): 0.07007550448179245,
→˓ (39, 23): 0.12673552334308624, (37, 19): 9.929924011230469})

To find the load that both entered and exited we can look at the edge pair select link results.

74 Chapter 1. Examples

AequilibraE Documentation

through = defaultdict(float)
for (l1, l2), v in edge_pair_values.items():

link1 = g.loc[l1]
link2 = g.loc[l2]

for (o, d), load in v.todok().items():
o_inside = o in inside_nodes.index
d_inside = d in inside_nodes.index

if not o_inside and not d_inside:
through[graph.all_nodes[link1.a_node], graph.all_nodes[link2.b_node]] += load

through

defaultdict(<class 'float'>, {(21, 23): 4.1274213790893555, (35, 22): 0.2188785821199417,
→˓ (35, 25): 9.781121253967285, (22, 37): 0.435827374458313, (26, 36): 0.
→˓2188785821199417, (23, 36): 5.337530136108398, (23, 38): 4.443591117858887, (25, 37):␣
→˓9.564172744750977, (39, 26): 0.435827374458313, (39, 23): 5.436751365661621})

With these results we can construct a new demand matrix. Usually this would be now transplanted onto another network,
however for demonstration purposes we’ll reuse the same network.

demand = pd.DataFrame(
list(entered.values()) + list(exited.values()) + list(through.values()),
index=pd.MultiIndex.from_tuples(

list(entered.keys()) + list(exited.keys()) + list(through.keys()), names=[
→˓"origin id", "destination id"]

),
columns=["demand"],

).sort_index()
demand.head()

We’ll re-prepare our graph but with our new “external” ODs.

new_centroids = np.unique(demand.reset_index()[["origin id", "destination id"]].to_
→˓numpy().reshape(-1))
graph.prepare_graph(new_centroids)
graph.set_graph("utility")
new_centroids

2024-08-19 06:18:11,807;WARNING ; Field(s) speed, travel_time, capacity, osm_id, lanes␣
→˓has(ve) at least one NaN value. Check your computations

array([19, 20, 21, 22, 23, 25, 26, 34, 35, 36, 37, 38, 39])

Re-perform our assignment

rc = RouteChoice(graph)
rc.add_demand(demand)
rc.set_choice_set_generation("link-penalisation", max_routes=5, penalty=1.02, store_
→˓results=False, seed=123)
rc.execute(perform_assignment=True)

And plot the link loads for easy viewing

1.7. Other Applications 75

AequilibraE Documentation

map = plot_results(rc.get_load_results()["demand"])
subarea_zone.add_to(map)
map

Total running time of the script: (0 minutes 41.923 seconds)

1.7.7 Other Applications

Logging to terminal

In this example, we show how to make all log messages show in the terminal.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example
import logging
import sys

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)
project = create_example(fldr)
logger = project.logger

With the project open, we can tell the logger to direct all messages to the terminal as well

stdout_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(asctime)s;%(levelname)s ; %(message)s")
stdout_handler.setFormatter(formatter)
logger.addHandler(stdout_handler)

project.close()

Total running time of the script: (0 minutes 0.117 seconds)

Checking AequilibraE’s log

AequilibraE’s log is a very useful tool to get more information about what the software is doing under the hood.

Information such as Traffic Class and Traffic Assignment stats, and Traffic Assignment outputs. If you have created your
project’s network from OSM, you will also find information on the number of nodes, links, and the query performed
to obtain the data.

In this example, we’ll use Sioux Falls data to check the logs, but we strongly encourage you to go ahead and download
a place of your choice and perform a traffic assignment!

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join

(continues on next page)

76 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

from aequilibrae.utils.create_example import create_example
from aequilibrae.paths import TrafficAssignment, TrafficClass

We create an empty project on an arbitrary folder

fldr = join(gettempdir(), uuid4().hex)
project = create_example(fldr)

We build our graphs

project.network.build_graphs()

graph = project.network.graphs["c"]
graph.set_graph("free_flow_time")
graph.set_skimming(["free_flow_time", "distance"])
graph.set_blocked_centroid_flows(False)

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/network.py:327: FutureWarning: Downcasting object dtype arrays on .fillna, .
→˓ffill, .bfill is deprecated and will change in a future version. Call result.infer_
→˓objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option(
→˓'future.no_silent_downcasting', True)`
df = pd.read_sql(sql, conn).fillna(value=np.nan)

We get our demand matrix from the project and create a computational view

proj_matrices = project.matrices
demand = proj_matrices.get_matrix("demand_omx")
demand.computational_view(["matrix"])

Now let’s perform our traffic assignment

assig = TrafficAssignment()

assigclass = TrafficClass(name="car", graph=graph, matrix=demand)

assig.add_class(assigclass)
assig.set_vdf("BPR")
assig.set_vdf_parameters({"alpha": 0.15, "beta": 4.0})
assig.set_capacity_field("capacity")
assig.set_time_field("free_flow_time")
assig.set_algorithm("bfw")
assig.max_iter = 50
assig.rgap_target = 0.001

assig.execute()

with open(join(fldr, "aequilibrae.log")) as file:
for idx, line in enumerate(file):

print(idx + 1, "-", line)

1.7. Other Applications 77

AequilibraE Documentation

1 - 2024-08-19 06:18:17,489;WARNING ; Field(s) name, lanes has(ve) at least one NaN␣
→˓value. Check your computations

2 - 2024-08-19 06:18:17,517;WARNING ; Field(s) name, lanes has(ve) at least one NaN␣
→˓value. Check your computations

3 - 2024-08-19 06:18:17,546;WARNING ; Field(s) name, lanes has(ve) at least one NaN␣
→˓value. Check your computations

4 - 2024-08-19 06:18:17,574;WARNING ; Field(s) name, lanes has(ve) at least one NaN␣
→˓value. Check your computations

5 - 2024-08-19 06:18:17,602;WARNING ; Field(s) name, lanes has(ve) at least one NaN␣
→˓value. Check your computations

6 - 2024-08-19 06:18:17,631;WARNING ; Field(s) name, lanes has(ve) at least one NaN␣
→˓value. Check your computations

7 - 2024-08-19 06:18:17,649;WARNING ; Cost field with wrong type. Converting to float64

8 - 2024-08-19 06:18:17,901;INFO ; Traffic Class specification

9 - 2024-08-19 06:18:17,902;INFO ; {'car': {'Graph': "{'Mode': 'c', 'Block through␣
→˓centroids': False, 'Number of centroids': 24, 'Links': 76, 'Nodes': 24}", 'Matrix': "{
→˓'Source': '/tmp/eeba37449b5242c09ede6af08cccc01e/matrices/demand.omx', 'Number of␣
→˓centroids': 24, 'Matrix cores': ['matrix'], 'Matrix totals': {'matrix': 360600.0}}"}}

10 - 2024-08-19 06:18:17,902;INFO ; Traffic Assignment specification

11 - 2024-08-19 06:18:17,902;INFO ; {'VDF parameters': {'alpha': 0.15, 'beta': 4.0},
→˓'VDF function': 'bpr', 'Number of cores': 4, 'Capacity field': 'capacity', 'Time field
→˓': 'free_flow_time', 'Algorithm': 'bfw', 'Maximum iterations': 250, 'Target RGAP': 0.
→˓0001}

12 - 2024-08-19 06:18:17,904;WARNING ; Cost field with wrong type. Converting to float64

13 - 2024-08-19 06:18:17,904;INFO ; bfw Assignment STATS

14 - 2024-08-19 06:18:17,904;INFO ; Iteration, RelativeGap, stepsize

15 - 2024-08-19 06:18:17,912;INFO ; 1,inf,1.0

16 - 2024-08-19 06:18:17,917;INFO ; 2,0.8550751349428284,0.32839952448634563

17 - 2024-08-19 06:18:17,921;INFO ; 3,0.4763455007221067,0.18660240547488702

18 - 2024-08-19 06:18:17,926;INFO ; 4,0.2355126365951965,0.2411477440291793

19 - 2024-08-19 06:18:17,930;INFO ; 5,0.10924072010481088,0.8185470737942447

20 - 2024-08-19 06:18:17,935;INFO ; 6,0.1980945227617506,0.14054330572978305

21 - 2024-08-19 06:18:17,939;INFO ; 7,0.0668172221544687,0.36171152718899235
(continues on next page)

78 Chapter 1. Examples

AequilibraE Documentation

(continued from previous page)

22 - 2024-08-19 06:18:17,945;INFO ; 8,0.06792122267870576,0.9634685345644022

23 - 2024-08-19 06:18:17,950;INFO ; 9,0.10705582933092841,0.13757153109677167

24 - 2024-08-19 06:18:17,957;INFO ; 10,0.04038814432034621,0.16094034254279752

25 - 2024-08-19 06:18:17,961;INFO ; 11,0.02795248113775691,0.3408928228700519

26 - 2024-08-19 06:18:17,968;INFO ; 12,0.032699992065524604,0.5467680533028708

27 - 2024-08-19 06:18:17,973;INFO ; 13,0.024040970172177347,0.13812236751253115

28 - 2024-08-19 06:18:17,978;INFO ; 14,0.02145103090950847,0.1970528150890536

29 - 2024-08-19 06:18:17,984;INFO ; 15,0.01711663825927409,0.339938165833639

30 - 2024-08-19 06:18:17,993;INFO ; 16,0.01735082411129593,0.7287610532385608

31 - 2024-08-19 06:18:17,998;INFO ; 17,0.021164705464372085,0.08183287977099543

32 - 2024-08-19 06:18:18,004;INFO ; 18,0.012464530324249264,0.1511598580475933

33 - 2024-08-19 06:18:18,009;INFO ; 19,0.012549789919850556,0.16834049481540092

34 - 2024-08-19 06:18:18,017;INFO ; 20,0.01186071978971438,0.5399903522726657

35 - 2024-08-19 06:18:18,025;INFO ; 21,0.012859165521051463,0.054966591996545584

36 - 2024-08-19 06:18:18,030;INFO ; 22,0.007671197552803449,0.061255615573588974

37 - 2024-08-19 06:18:18,037;INFO ; 23,0.0055291789072302415,0.07401911120606758

38 - 2024-08-19 06:18:18,042;INFO ; 24,0.0054667973306647966,0.191709779243585

39 - 2024-08-19 06:18:18,046;INFO ; 25,0.007073668823306543,0.4228720696283197

40 - 2024-08-19 06:18:18,053;INFO ; 26,0.009664731222551466,0.9410177051614603

41 - 2024-08-19 06:18:18,058;INFO ; 27,0.008756083467130159,0.0517261106187546

42 - 2024-08-19 06:18:18,062;INFO ; 28,0.005105221228053528,0.06397929882334243

43 - 2024-08-19 06:18:18,073;INFO ; 29,0.0035319062476952545,0.05059090498821875

44 - 2024-08-19 06:18:18,081;INFO ; 30,0.0031482926233624984,0.058437487817954215

45 - 2024-08-19 06:18:18,086;INFO ; 31,0.003063209044595543,0.09173138967981778

46 - 2024-08-19 06:18:18,090;INFO ; 32,0.0026646507707733915,0.07094979246385001

47 - 2024-08-19 06:18:18,097;INFO ; 33,0.002302802037873952,0.1241286415196512

(continues on next page)

1.7. Other Applications 79

AequilibraE Documentation

(continued from previous page)

48 - 2024-08-19 06:18:18,101;INFO ; 34,0.0027510302560630273,0.12799355702549403

49 - 2024-08-19 06:18:18,106;INFO ; 35,0.002125634778303211,0.1662038793394487

50 - 2024-08-19 06:18:18,113;INFO ; 36,0.002099491223200739,0.10282963642091511

51 - 2024-08-19 06:18:18,121;INFO ; 37,0.0014407763657242768,0.1449210133686946

52 - 2024-08-19 06:18:18,128;INFO ; 38,0.001418044704398517,0.06529689866671036

53 - 2024-08-19 06:18:18,132;INFO ; 39,0.0009714813735968882,0.09399257335234756

54 - 2024-08-19 06:18:18,133;INFO ; bfw Assignment finished. 39 iterations and 0.
→˓0009714813735968882 final gap

In lines 1-7, we receive some warnings that our fields name and lane have NaN values. As they are not relevant to our
example, we can move on.

In lines 8-9 we get the Traffic Class specifications. We can see that there is only one traffic class (car). Its graph key
presents information on blocked flow through centroids, number of centroids, links, and nodes. In the matrix key, we
find information on where in the disk the matrix file is located. We also have information on the number of centroids
and nodes, as well as on the matrix/matrices used for computation. In our example, we only have one matrix named
matrix, and the total sum of this matrix element is equal to 360,600. If you have more than one matrix its data will be
also displayed in the matrix_cores and matrix_totals keys.

In lines 10-11 the log shows the Traffic Assignment specifications. We can see that the VDF parameters, VDF func-
tion, capacity and time fields, algorithm, maximum number of iterations, and target gap are just like the ones we set
previously. The only information that might be new to you is the number of cores used for computation. If you haven’t
set any, AequilibraE is going to use the largest number of CPU threads available.

Line 12 displays us a warning to indicate that AequilibraE is converting the data type of the cost field.

Lines 13-61 indicate that we’ll receive the outputs of a bfw algorithm. In the log there are also the number of the
iteration, its relative gap, and the stepsize. The outputs in lines 15-60 are exactly the same as the ones provided by
the function assig.report(). Finally, the last line shows us that the bfw assignment has finished after 46 iterations
because its gap is smaller than the threshold we configured (0.001).

In case you execute a new traffic assignment using different classes or changing the parameters values, these new
specification values would be stored in the log file as well so you can always keep a record of what you have been
doing. One last reminder is that if we had created our project from OSM, the lines on top of the log would have been
different to display information on the queries done to the server to obtain the data.

Log image by https://oldschool.runescape.wiki/index.php?curid=66905#

Total running time of the script: (0 minutes 0.751 seconds)

80 Chapter 1. Examples

https://oldschool.runescape.wiki/index.php

AequilibraE Documentation

Exporting network to GMNS

In this example, we export a simple network to GMNS format. The source AequilibraE model used as input for this is
the result of the import process (create_from_gmns()) using the GMNS example of Arlington Signals, which can
be found in the GMNS repository on GitHub: https://github.com/zephyr-data-specs/GMNS

Imports
from uuid import uuid4
import os
from tempfile import gettempdir
from aequilibrae.utils.create_example import create_example
import pandas as pd
import folium

We load the example project inside a temp folder

fldr = os.path.join(gettempdir(), uuid4().hex)

project = create_example(fldr)

We export the network to csv files in GMNS format, that will be saved inside the project folder

output_fldr = os.path.join(gettempdir(), uuid4().hex)
if not os.path.exists(output_fldr):

os.mkdir(output_fldr)

project.network.export_to_gmns(path=output_fldr)

Now, let’s plot a map. This map can be compared with the images of the README.md file located in this example repos-
itory on GitHub: https://github.com/zephyr-data-specs/GMNS/blob/develop/examples/Arlington_Signals/README.
md

links = pd.read_csv(os.path.join(output_fldr, "link.csv"))
nodes = pd.read_csv(os.path.join(output_fldr, "node.csv"))

We create our Folium layers
network_links = folium.FeatureGroup("links")
network_nodes = folium.FeatureGroup("nodes")
layers = [network_links, network_nodes]

We do some Python magic to transform this dataset into the format required by Folium
We are only getting link_id and link_type into the map, but we could get other pieces␣
→˓of info as well
for i, row in links.iterrows():

points = row.geometry.replace("LINESTRING ", "").replace("(", "").replace(")", "").
→˓split(", ")

points = "[[" + "],[".join([p.replace(" ", ", ") for p in points]) + "]]"
we need to take from x/y to lat/long
points = [[x[1], x[0]] for x in eval(points)]

_ = folium.vector_layers.PolyLine(
points, popup=f"link_id: {row.link_id}", tooltip=f"{row.facility_type}",␣

→˓color="black", weight=2
).add_to(network_links)

(continues on next page)

1.7. Other Applications 81

https://github.com/zephyr-data-specs/GMNS
https://github.com/zephyr-data-specs/GMNS/blob/develop/examples/Arlington_Signals/README.md
https://github.com/zephyr-data-specs/GMNS/blob/develop/examples/Arlington_Signals/README.md

AequilibraE Documentation

(continued from previous page)

And now we get the nodes
for i, row in nodes.iterrows():

point = (row.y_coord, row.x_coord)

_ = folium.vector_layers.CircleMarker(
point,
popup=f"link_id: {row.node_id}",
tooltip=f"{row.node_type}",
color="red",
radius=5,
fill=True,
fillColor="red",
fillOpacity=1.0,

).add_to(network_nodes)

We get the center of the region
curr = project.conn.cursor()
curr.execute("select avg(xmin), avg(ymin) from idx_links_geometry")
long, lat = curr.fetchone()

We create the map
map_gmns = folium.Map(location=[lat, long], zoom_start=12)

add all layers
for layer in layers:

layer.add_to(map_gmns)

And Add layer control before we display it
folium.LayerControl().add_to(map_gmns)
map_gmns

project.close()

Total running time of the script: (0 minutes 0.329 seconds)

Finding disconnected links

In this example, we show how to find disconnected links in an AequilibraE network..

We use the Nauru example to find disconnected links.

Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from datetime import datetime
import pandas as pd
import numpy as np
from aequilibrae.utils.create_example import create_example
from aequilibrae.paths.results import PathResults

82 Chapter 1. Examples

AequilibraE Documentation

We create an empty project on an arbitrary folder

fldr = join(gettempdir(), uuid4().hex)

Let's use the Nauru example project for display
project = create_example(fldr, "nauru")

Let's analyze the mode car or 'c' in our model
mode = "c"

We need to create the graph, but before that, we need to have at least one centroid in our network.

We get an arbitrary node to set as centroid and allow for the construction of graphs
centroid_count = project.conn.execute("select count(*) from nodes where is_centroid=1").
→˓fetchone()[0]

if centroid_count == 0:
arbitrary_node = project.conn.execute("select node_id from nodes limit 1").

→˓fetchone()[0]
nodes = project.network.nodes
nd = nodes.get(arbitrary_node)
nd.is_centroid = 1
nd.save()

network = project.network
network.build_graphs(modes=[mode])
graph = network.graphs[mode]
graph.set_blocked_centroid_flows(False)

if centroid_count == 0:
Let's revert to setting up that node as centroid in case we had to do it

nd.is_centroid = 0
nd.save()

/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/aequilibrae/project/
→˓network/network.py:327: FutureWarning: Downcasting object dtype arrays on .fillna, .
→˓ffill, .bfill is deprecated and will change in a future version. Call result.infer_
→˓objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option(
→˓'future.no_silent_downcasting', True)`
df = pd.read_sql(sql, conn).fillna(value=np.nan)

We set the graph for computation

graph.set_graph("distance")
graph.set_skimming("distance")

Get the nodes that are part of the car network

missing_nodes = [
x[0] for x in project.conn.execute(f"Select node_id from nodes where instr(modes, '

→˓{mode}')").fetchall()
]
missing_nodes = np.array(missing_nodes)

1.7. Other Applications 83

AequilibraE Documentation

And prepare the path computation structure

res = PathResults()
res.prepare(graph)

Now we can compute all the path islands we have

islands = []
idx_islands = 0

while missing_nodes.shape[0] >= 2:
print(datetime.now().strftime("%H:%M:%S"), f" - Computing island: {idx_islands}")
res.reset()
res.compute_path(missing_nodes[0], missing_nodes[1])
res.predecessors[graph.nodes_to_indices[missing_nodes[0]]] = 0
connected = graph.all_nodes[np.where(res.predecessors >= 0)]
connected = np.intersect1d(missing_nodes, connected)
missing_nodes = np.setdiff1d(missing_nodes, connected)
print(f" Nodes to find: {missing_nodes.shape[0]:,}")
df = pd.DataFrame({"node_id": connected, "island": idx_islands})
islands.append(df)
idx_islands += 1

print(f"\nWe found {idx_islands} islands")

06:18:18 - Computing island: 0
Nodes to find: 2

06:18:18 - Computing island: 1
Nodes to find: 0

We found 2 islands

Let’s consolidate everything into a single DataFrame

islands = pd.concat(islands)

And save to disk alongside our model
islands.to_csv(join(fldr, "island_outputs_complete.csv"), index=False)

If you join the node_id field in the csv file generated above with the a_node or b_node fields in the links table, you will
have the corresponding links in each disjoint island found.

project.close()

Total running time of the script: (0 minutes 0.170 seconds)

84 Chapter 1. Examples

CHAPTER

TWO

MODELING WITH AEQUILIBRAE

AequilibraE is the first fully-featured Python package for transportation modeling, and it aims to provide all the re-
sources not easily available from other open-source packages in the Python (NumPy, really) ecosystem.

AequilibraE has also a fully features interface available as a plugin for the open source software QGIS, which is sepa-
rately maintained and discussed in detail its documentation.

Contributions are welcome to the existing modules and/or in the form of new modules.

In this section you can find a deep dive into modeling with AequilibraE, from a start guide to a complete view into
AequilibraE’s data structure.

2.1 The AequilibraE project

Similarly to commercial packages, any AequilibraE project must have a certain structure and follow a certain set of
guidelines in order for software to work correctly.

One of these requirements is that AequilibraE currently only supports one projection system for all its layers, which is
the EPSG:4326 (WGS84). This limitation is planned to be lifted at some point, but it does not impact the result of any
modeling procedure.

AequilibraE is built on the shoulder of much older and more established projects, such as SQLite, SpatiaLite and
NumPy, as well as reasonably new industry standards such as the Open-Matrix format.

Impressive performance, portability, self containment and open-source character of these pieces of software, along
with their large user base and wide industry support make them solid options to be AequilibraE’s data backend.

Since working with Spatialite is not just a matter of a pip install, please refer to Dependencies. For QGIS users this is
not a concern, while for Windows users this dependency is automatically handled under the hood, but the details are
also discussed in the aforementioned dependencies section.

2.1.1 Project structure

Since version 0.7, the AequilibraE project consists of a main folder, where a series of files and sub folders exist, and
the current project organization is as follows:

85

http://www.aequilibrae.com/qgis
https://sqlite.org/index.html
http://www.gaia-gis.it/gaia-sins/
https://numpy.org/
https://github.com/osPlanning/omx

AequilibraE Documentation

86 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

The main component of an AequilibraE model is the project_database.sqlite, where the network and zoning system
are stored and maintained, as well as the documentation records of all matrices and procedure results stored in other
folders and databases.

The second key component of any model is the parameters.yaml file, which holds the default values for a number of
procedures (e.g. assignment convergence), as well as the specification for networks imported from Open-Street Maps
and other general import-export parameters.

The third and last required component of an AequilibraE model is the Matrices folder, where all the matrices in binary
format (in AequilibraE’s native AEM or OMX formats) should be placed. This folder can be empty, however, as no
particular matrix is required to exist in an AequilibraE model.

The database that stores results in tabular format (e.g. link loads from traffic assignment), results_database.sqlite is
created on-the-fly the first time a command to save a tabular result into the model is invoked, so the user does not need
to worry about its existence until it is automatically created.

The demand_database.sqlite is envisioned to hold all the demand-related information, and it is not yet structured
within the AequilibraE code, as there is no pre-defined demand model available for use with AequilibraE. This database
is not created with the model, but we recommend using this concept on your demand models.

The public_transport.sqlite database holds a transportation route system for a model, and has been introduced in Ae-
quilibraE version 0.9. This database is also created on-the-fly when the user imports a GTFS source into an AequilibraE
model, but there is still no support for manually or programmatically adding routes to a route system as of yet.

Package components: A conceptual view

As all the components of an AequilibraE model based on open-source software and open-data standards, modeling
with AequilibraE is a little different from modeling with commercial packages, as the user can read and manipulate
model components outside the software modeling environments (Python and QGIS).

Thus, using/manipulating each one of an AequilibraE model components can be done in different ways depending on
the tool you use for such.

It is then important to highlight that AequilibraE, as a software, is divided in three very distinctive layers. The first,
which is responsible for tables consistent with each other (including links and nodes, modes and link_types), are em-
bedded in the data layer in the form of geo-spatial database triggers. The second is the Python API, which provides all
of AequilibraE’s core algorithms and data manipulation facilities. The third is the GUI implemented in QGIS, which
provides a user-friendly interface to access the model, visualize results and run procedures.

These software layers are stacked and depend on each other, which means that any network editing done in SQLite,
Python or QGIS will go through the SpatiaLite triggers, while any procedure such as traffic assignment done in QGIS
is nothing more than an API call to the corresponding Python method.

2.2 Parameters YAML File

The parameter file holds the parameters information for a certain portion of the software.

• Assignment

• Distribution

• Network

• System

2.2. Parameters YAML File 87

AequilibraE Documentation

• Open Streeet Maps

2.2.1 Assignment

The assignment section of the parameter file is the smallest one, and it contains only the convergence criteria for
assignment in terms of the maximum number of iterations and target Relative Gap.

Although these parameters are required to exist in the parameters file, one can override them during the assignment, as
detailed in Convergence criteria.

2.2.2 Distribution

The distribution section of the parameter file is also fairly short, as it contains only the parameters for number of
maximum iterations, convergence level and maximum trip length to be applied in Iterative Proportional Fitting and
synthetic gravity models, as shown below.

2.2.3 Network

There are four groups of parameters under the network section: links, nodes, OSM, and GMNS. The first are basically
responsible for the design of the network to be created in case a new project/network is to bre created from scratch, and
for now each one of these groups contains only a single group of parameters called fields.

88 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

Link Fields

The section for link fields are divided into one-way fields and two-way fields, where the two-way fields will be created
by appending _ab and _ba to the end of each field’s name.

There are 5 fields which cannot be changed, as they are mandatory fields for an AequilibraE network, and they are
link_id, a_node, b_node, direction, distance and modes. The field geometry is also default, but it is not listed in the
parameter file due to its distinct nature.

The list of fields required in the network are enumerated as an array under either one-way or two-way in the parameter
file, and each field is a dictionary/hash that has the field’s name as the only key and under which there is a field for
description and a field for data type. The data types available are those that exist within the SQLite specification . We
recommend limiting yourself to the use of integer, numeric and varchar.

For the case of all non-mandatory fields, two more parameters are possible: osm_source and osm_behaviour. Those two
fields provide the necessary information for importing data from Open Street Maps in case such resource is required,
and they work in the following way:

osm_source: The name of the tag for which data needs to be retrieved. Common tags are highway, maxspeed and
name. The import result will contain a null value for all links that do not contain a value for such tag.

Within OSM, there is the concept of tags for each link direction, such as maxspeed:forward and maxspeed:backward.
However, it is not always that a two-directional link contains tag values for both directions, and it might have only a tag
value for maxspeed.

Although for maxspeed (which is the value for posted speed) we might want to copy the same value for both directions,
that would not be true for parameters such as lanes, which we might want to split in half for both directions (cases with
an odd number of lanes usually have forward/backward values tagged). For this reason, one can use the parameter
osm_behaviour to define what to do with numeric tag values that have not been tagged for both directions. the allowed
values for this parameter are copy and divide, as shown below.

2.2. Parameters YAML File 89

https://www.sqlite.org/datatype3.html
https://www.openstreetmap.org/

AequilibraE Documentation

The example below also shows that it is possible to mix fields that will be imported from OSM posted speed and number
of lanes, and fields that need to be in the network but should not be imported from OSM, such as link capacities.

Node fields

The specification for node fields is similar to the one for link fields, with the key difference that it does not make sense
to have fields for one or two directions and that it is not possible yet to import any tagged values from OSM at the
moment, and therefore the parameter osm_source would have no effect here.

Open Street Maps

The OSM group of parameters has two specifications: modes and all_link_types.

modes contains the list of key tags we will import for each mode. Description of tags can be found on Open-Street
Maps, and we recommend not changing the standard parameters unless you are exactly sure of what you are doing.

For each mode to be imported there is also a mode filter to control for non-default behaviour. For example, in some
cities pedestrians a generally allowed on cycleways, but they might be forbidden in specific links, which would be
tagged as pedestrian:no. This feature is stored under the key mode_filter under each mode to be imported.

There is also the possibility that not all keywords for link types for the region being imported, and therefore unknown
link type tags are treated as a special case for each mode, and that is controlled by the key unknown_tags in the param-
eters file.

90 Chapter 2. Modeling with AequilibraE

https://www.openstreetmap.org/
https://wiki:openstreetmap:org/wiki/Key:highway:
https://wiki:openstreetmap:org/wiki/Key:highway:

AequilibraE Documentation

GMNS

The GMNS group of parameters has four specifications: critical_dist, link, node, and use_definition.

critical_dist is a numeric threshold for the distance.

Under the keys links, nodes, and use_definition there are the fields equivalency and fields. They represent the equiv-
alency between GMNS and AequilibraE data fields and data types for each field.

2.2.4 System

The system section of the parameters file holds information on the number of threads used in multi-threaded processes,
logging and temp folders and whether we should be saving information to a log file at all, as exemplified below.

The number of CPUs have a special behaviour defined, as follows:

• cpus<0 : The system will use the total number logical processors MINUS the absolute value of cpus

• cpus=0 : The system will use the total number logical processors available

• cpus>0
[The system will use exactly cpus for computation, limited to] the total number logical processors available

A few of these parameters, however, are targeted at its QGIS plugin, which is the case of the driving side and de-
fault_directory parameters.

2.2. Parameters YAML File 91

AequilibraE Documentation

2.2.5 Open Streeet Maps

The OSM section of the parameter file is relevant only when one plans to download a substantial amount of data from
an Overpass API, in which case it is recommended to deploy a local Overpass server.

The user is also welcome to change the maximum area for a single query to the Overpass API (m2) and the pause
duration between successive requests sleeptime.

It is also possible to set a custom address for the Nominatim server, but its use by AequilibraE is so small that it is likely
not necessary to do so.

2.3 Project database

More details on the project_database.sqlite are discussed on a nearly per-table basis below, and we recommend
understanding the role of each table before setting an AequilibraE model you intend to use in anger.

2.3.1 About table

The about table is the simplest of all tables in the AequilibraE project, but it is the one table that contains the docu-
mentation about the project, and it is therefore crucial for project management and quality assurance during modeling
projects.

It is possible to create new information fields programmatically. Once the new field is added, the underlying database
is altered and the field will be present when the project is open during future use.

This table, which can look something like the example from image below, is required to exist in AequilibraE but it is
not currently actively used by any process but we strongly recommend not to edit the information on projection and
aequilibrae_version, as these are fields that might or might not be used by the software to produce valuable information
to the user with regards to opportunities for version upgrades.

92 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

An API for editing the contents of this database is available from the API documentation.

2.3. Project database 93

AequilibraE Documentation

2.3.2 Network

The objectives of developing a network format for AequilibraE are to provide the users a seamless integration between
network data and transportation modeling algorithms and to allow users to easily edit such networks in any GIS platform
they’d like, while ensuring consistency between network components, namely links and nodes. As the network is
composed by two tables, links and nodes, maintaining this consistency is not a trivial task.

As mentioned in other sections of this documentation, the links and a nodes layers are kept consistent with each other
through the use of database triggers, and the network can therefore be edited in any GIS platform or programmatically
in any fashion, as these triggers will ensure that the two layers are kept compatible with each other by either making
other changes to the layers or preventing the changes.

We cannot stress enough how impactful this set of spatial triggers was to the transportation modeling practice,
as this is the first time a transportation network can be edited without specialized software that requires the editing
to be done inside such software.

Note

AequilibraE does not currently support turn penalties and/or bans. Their implementation requires a complete over-
ahaul of the path-building code, so that is still a long-term goal, barred specific development efforts.

Importing and exporting the network

Currently AequilibraE can import links and nodes from a network from OpenStreetMaps, GMNS, and from link layers.
AequilibraE can also export the existing network into GMNS format. There is some valuable information on these topics
in the following pages:

• Importing files in GMNS format

• Importing from OpenStreetMaps

• Importing from link layers

• Exporting AequilibraE model to GMNS format

Dealing with Geometries

Geometry is a key feature when dealing with transportation infrastructure and actual travel. For this reason, all datasets
in AequilibraE that correspond to elements with physical GIS representation, links and nodes in particular, are geo-
enabled.

This also means that the AequilibraE API needs to provide an interface to manipulate each element’s geometry in a
convenient way. This is done using the standard Shapely, and we urge you to study its comprehensive API before
attempting to edit a feature’s geometry in memory.

As we mentioned in other sections of the documentation, the user is also welcome to use its powerful tools to manipulate
your model’s geometries, although that is not recommended, as the “training wheels are off”.

94 Chapter 2. Modeling with AequilibraE

https://shapely.readthedocs.io/

AequilibraE Documentation

Data consistency

Data consistency is not achieved as a monolithic piece, but rather through the treatment of specific changes to each
aspect of all the objects being considered (i.e. nodes and links) and the expected consequence to other tables/elements.
To this effect, AequilibraE has triggers covering a comprehensive set of possible operations for links and nodes, covering
both spatial and tabular aspects of the data.

Although the behaviour of these trigger is expected to be mostly intuitive to anybody used to editing transportation
networks within commercial modeling platforms, we have detailed the behaviour for all different network changes in
Change behavior .

This implementation choice is not, however, free of caveats. Due to technological limitations of SQLite, some of the
desired behaviors identified in Change behavior cannot be implemented, but such caveats do not impact the usefulness
of this implementation or its robustness in face of minimally careful use of the tool.

Note

This documentation, as well as the SQL code it referes to, comes from the seminal work done in TranspoNet by
Pedro and Andrew.

Network consistency behaviour

In order for the implementation of this standard to be successful, it is necessary to map all the possible user-driven
changes to the underlying data and the behavior the SQLite database needs to demonstrate in order to maintain con-
sistency of the data. The detailed expected behavior is detailed below. As each item in the network is edited, a series
of checks and changes to other components are necessary in order to keep the network as a whole consistent. In this
section we list all the possible physical (geometrical) changes to each element of the network and what behavior (con-
sequences) we expect from each one of these changes. Our implementation, in the form of a SQLite database, will be
referred to as network from this point on.

Ensuring data consistency as each portion of the data is edited is a two part problem:

1. Knowing what to do when a certain edit is attempted by the user

2. Automatically applying the tests and consistency checks (and changes) required on one

Change behavior

In this section we present the mapping of all meaningful operations that a user can do to links and nodes, and you can
use the table below to navigate between each of the changes to see how they are treated through triggers.

Nodes Links
Creating a node Deleting a link
Deleting a node Moving a link extremity
Moving a node Re-shaping a link
Adding a data field Deleting a required field
Deleting a data field
Modifying a data entry

2.3. Project database 95

http://github.com/AequilibraE/TranspoNet/
https://au.linkedin.com/in/pedrocamargo
https://au.linkedin.com/in/andrew-o-brien-5a8bb486

AequilibraE Documentation

Node layer changes and expected behavior

There are 6 possible changes envisioned for the network nodes layer, being 3 of geographic nature and 3 of data-only
nature. The possible variations for each change are also discussed, and all the points where alternative behavior is
conceivable are also explored.

Creating a node

There are only three situations when a node is to be created:

• Placement of a link extremity (new or moved) at a position where no node already exists

• Splitting a link in the middle

• Creation of a centroid for later connection to the network

In all cases a unique node ID needs to be generated for the new node, and all other node fields should be empty.

An alternative behavior would be to allow the user to create nodes with no attached links. Although this would not
result in inconsistent networks for traffic and transit assignments, this behavior would not be considered valid. All other
edits that result in the creation of unconnected nodes or that result in such case should result in an error that prevents
such operation

Behavior regarding the fields regarding modes and link types is discussed in their respective table descriptions

Deleting a node

Deleting a node is only allowed in two situations:

• No link is connected to such node (in this case, the deletion of the node should be handled automatically when
no link is left connected to such node)

• When only two links are connected to such node. In this case, those two links will be merged, and a standard
operation for computing the value of each field will be applied.

For simplicity, the operations are: Weighted average for all numeric fields, copying the fields from the longest link for
all non-numeric fields. Length is to be recomputed in the native distance measure of distance for the projection being
used.

A node can only be eliminated as a consequence of all links that terminated/ originated at it being eliminated. If the
user tries to delete a node, the network should return an error and not perform such operation.

Behavior regarding the fields regarding modes and link types is discussed in their respective table descriptions

Moving a node

There are two possibilities for moving a node: Moving to an empty space, and moving on top of another node.

• If a node is moved to an empty space

All links originated/ending at that node will have its shape altered to conform to that new node position and keep
the network connected. The alteration of the link happens only by changing the Latitude and Longitude of the link
extremity associated with that node.

• If a node is moved on top of another node

96 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

All the links that connected to the node on the bottom have their extremities switched to the node on top The node on
the bottom gets eliminated as a consequence of the behavior listed on Deleting a node

Behavior regarding the fields regarding modes and link types is discussed in their respective table descriptions

Adding a data field

No consistency check is needed other than ensuring that no repeated data field names exist

Deleting a data field

If the data field whose attempted deletion is mandatory, the network should return an error and not perform such
operation. Otherwise the operation can be performed.

Modifying a data entry

If the field being edited is the node_id field, then all the related tables need to be edited as well (e.g. a_b and b_node
in the link layer, the node_id tagged to turn restrictions and to transit stops)

Link layer changes and expected behavior

Network links layer also has some possible changes of geographic and data-only nature.

Deleting a link

In case a link is deleted, it is necessary to check for orphan nodes, and deal with them as prescribed in Deleting a node.
In case one of the link extremities is a centroid (i.e. field is_centroid =1), then the node should not be deleted even if
orphaned.

Behavior regarding the fields regarding modes and link types is discussed in their respective table descriptions.

Moving a link extremity

This change can happen in two different forms:

• The link extremity is moved to an empty space

In this case, a new node needs to be created, according to the behavior described in Creating a node . The information
of node ID (A or B node, depending on the extremity) needs to be updated according to the ID for the new node created.

• The link extremity is moved from one node to another

The information of node ID (A or B node, depending on the extremity) needs to be updated according to the ID for the
node the link now terminates in.

Behavior regarding the fields regarding modes and link types is discussed in their respective table descriptions.

2.3. Project database 97

AequilibraE Documentation

Re-shaping a link

When reshaping a link, the only thing other than we expect to be updated in the link database is their length (or distance,
in AequilibraE’s field structure). As of now, distance in AequilibraE is ALWAYS measured in meters.

Deleting a required field

Unfortunately, SQLite does not have the resources to prevent a user to remove a data field from the table. For this
reason, if the user removes a required field, they will most likely corrupt the project.

Field-specific data consistency

Some data fields are specially sensitive to user changes.

Link distance

Link distance cannot be changed by the user, as it is automatically recalculated using the Spatialite function Geodesi-
cLength, which always returns distances in meters.

Link direction

Triggers enforce link direction to be -1, 0 or 1, and any other value results in an SQL exception.

modes field (Links and Nodes layers)

A serious of triggers are associated with the modes field, and they are all described in the Modes table.

link_type field (Links layer) & link_types field (Nodes layer)

A serious of triggers are associated with the modes field, and they are all described in the Link types table.

a_node and b_node

The user should not change the a_node and b_node fields, as they are controlled by the triggers that govern the con-
sistency between links and nodes. It is not possible to enforce that users do not change these two fields, as it is not
possible to choose the trigger application sequence in SQLite

98 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

2.3.3 Modes table

The modes table exists to list all the modes available in the model’s network, and its main role is to support the creation
of graphs directly from the SQLite project.

Note

Modes must have a unique mode_id composed of a single letter, which is case-sensitive to a total of 52 possible
modes in the model.

As described in the SQL data model, all AequilibraE models are created with 4 standard modes, which can be added
to or removed by the user, and would look like the following.

2.3. Project database 99

AequilibraE Documentation

Consistency triggers

As it happens with the links and nodes table (Network consistency behaviour), the modes table is kept consistent with
the links table through the use of database triggers.

Changing the modes allowed in a certain link

Whenever we change the modes allowed on a link, we need to check for two conditions:

• At least one mode is allowed on that link

• All modes allowed on that link exist in the modes table

For each condition, a specific trigger was built, and if any of the checks fails, the transaction will fail.

Having successfully changed the modes allowed in a link, we need to update the modes that are accessible to each of
the nodes which are the extremities of this link. For this purpose, a further trigger is created to update the modes field
in the nodes table for both of the link’s a_node and b_node.

Directly changing the modes field in the nodes table

A trigger guarantees that the value being inserted in the field is according to the values found in the associated links’
modes field. If the user attempts to overwrite this value, it will automatically be set back to the appropriate value.

Adding a new link

The exact same behaviour as for Changing the modes allowed in a certain link applies in this case, but it requires
specific new triggers on the creation of the link.

Editing a mode in the modes table

Whenever we want to edit a mode in the modes table, we need to check for two conditions:

• The new mode_id is exactly one character long

• The old mode_id is not still in use on the network

For each condition, a specific trigger was built, and if any of the checks fails, the transaction will fail.

The requirements for uniqueness and non-absent values are guaranteed during the construction of the modes table by
using the keys UNIQUE and NOT NULL.

Adding a new mode to the modes table

In this case, only the first behaviour mentioned above on Editing a mode in the modes table applies, the verification
that the mode_id is exactly one character long. Therefore only one new trigger is required.

100 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

Removing a mode from the modes table

In counterpoint, only the second behaviour mentioned above on Editing a mode in the modes table applies in this case,
the verification that the old mode_id is not still in use by the network. Therefore only one new trigger is required.

2.3.4 Link types table

The link_types table exists to list all the link types available in the model’s network, and its main role is to support
processes such as adding centroids and centroid connectors and to store reference data like default lane capacity for
each link type.

Reserved values

There are two default link types in the link_types table and that cannot be removed from the model without breaking it.

• centroid_connector - These are VIRTUAL links added to the network with the sole purpose of loading de-
mand/traffic onto the network. The identifying letter for this mode is z.

• default - This link type exists to facilitate the creation of networks when link types are irrelevant. The identifying
letter for this mode is y. That is right, you have from a to x to create your own link types, as well as all upper-case
letters of the alphabet.

Adding new link_types to a project

Adding link types to a project can be done through the Python API or directly into the link_types table, which could
look like the following.

2.3. Project database 101

AequilibraE Documentation

Note

Both link_type and link_type_id MUST be unique

Consistency triggers

As it happens with the links and nodes tables, (Network consistency behaviour), the link_types table is kept consistent
with the links table through the use of database triggers

102 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

Changes to reserved link_types

For both link types mentioned about (y & z), changes to the link_type and link_type_id fields, as well as the removal
of any of these records are blocked by database triggers, as to ensure that there is always one generic physical link type
and one virtual link type present in the model.

Changing the link_type for a certain link

Whenever we change the link_type associated to a link, we need to check whether that link type exists in the links_table.

This condition is ensured by specific trigger checking whether the new link_type exists in the link table. If if it does
not, the transaction will fail.

We also need to update the link_types field the nodes connected to the link with a new string of all the different
link_type_ids connected to them.

Adding a new link

The exact same behaviour as for Changing the link_type for a certain link applies in this case, but it requires an specific
trigger on the creation of the link.

Editing a link_type in the link_types table

Whenever we want to edit a link_type in the link_types table, we need to check for two conditions:

• The new link_type_id is exactly one character long

• The old link_type is not in use on the network

For each condition, a specific trigger was built, and if any of the checks fails, the transaction will fail.

The requirements for uniqueness and non-absent values are guaranteed during the construction of the link_types table
by using the keys UNIQUE and NOT NULL.

Adding a new link_type to the link_types table

In this case, only the first behaviour mentioned above on Editing a link_type in the link_types table applies, the verifi-
cation that the link_type_id is exactly one character long. Therefore only one new trigger is required.

Removing a link_type from the link_types table

In counterpoint, only the second behaviour mentioned above on Editing a link_type in the link_types table applies in
this case, the verification that the old link_type is not still in use by the network. Therefore only one new trigger is
required.

2.3. Project database 103

AequilibraE Documentation

2.3.5 Matrices

The matrices table in the project_database is nothing more than an index of all matrix files contained in the matrices
folder inside the AequilibraE project. This index, which looks like below, has two main columns. The first one is the
file_name, which contains the actual file name in disk as to allow AequilibraE to find the file, and name, which is the
name by which the user should refer to the matrix in order to access it through the API.

As AequilibraE is fully compatible with OMX, the index can have a mix of matrix types (AEM and OMX) without
prejudice to functionality.

2.3.6 Zones table

The default zones table has a MultiPolygon geometry type and a limited number of fields, as most of the data is
expected to be in the demand_database.sqlite.

The API for manipulation of the zones table and each one of its records is consistent with what exists to manipulate the
other fields in the database.

As it happens with links and nodes, zones also have geometries associated with them, and in this case they are of the
type .

2.3.7 Parameters metadata table

Documentation is paramount for any successful modeling project. For this reason, AequilibraE has a database ta-
ble dedicated to the documentation of each field in each of the other tables in the project. This table, called at-
tributes_documentation can be accessed directly through SQL, but it is envisaged that its editing and consultation
would happen through the Python API itself.

2.3.8 Results

The results table exists to hold the metadata for the results stored in the results_database.sqlite in the same folder
as the model database. In that, the table_name field is unique and must match exactly the table name in the re-
sults_database.sqlite.

Although those results could as be stored in the model database, it is possible that the number of tables in the model
file would grow too quickly and would essentially clutter the project_database.sqlite.

As a simple table, it looks as follows:

104 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

A more technical view of the database structure, including the SQL queries used to create each table and the indices
used for each table are also available.

2.3.9 SQL Data model

The data model presented in this section pertains only to the structure of AequilibraE’s project_database and general
information about the usefulness of specific fields, especially on the interdependency between tables.

Conventions

A few conventions have been adopted in the definition of the data model and some are listed below:

• Geometry field is always called geometry

• Projection is 4326 (WGS84)

• Tables are all in all lower case

Project tables

about table structure

The about table holds information about the AequilibraE model currently developed.

The infoname field holds the name of information being added

The infovalue field holds the information to add

Field Type NULL allowed Default Value
infoname TEXT NO
infovalue TEXT YES

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists about (infoname TEXT UNIQUE NOT NULL,
infovalue TEXT
);

(continues on next page)

2.3. Project database 105

AequilibraE Documentation

(continued from previous page)

INSERT INTO 'about' (infoname) VALUES('model_name');

INSERT INTO 'about' (infoname) VALUES('region');

INSERT INTO 'about' (infoname) VALUES('description');

INSERT INTO 'about' (infoname) VALUES('author');

INSERT INTO 'about' (infoname) VALUES('year');

INSERT INTO 'about' (infoname) VALUES('scenario_description');

INSERT INTO 'about' (infoname) VALUES('model_version');

INSERT INTO 'about' (infoname) VALUES('project_id');

INSERT INTO 'about' (infoname) VALUES('aequilibrae_version');

INSERT INTO 'about' (infoname) VALUES('projection');

INSERT INTO 'about' (infoname) VALUES('driving_side');

INSERT INTO 'about' (infoname) VALUES('license');

INSERT INTO 'about' (infoname) VALUES('scenario_name');

attributes documentation table structure

The attributes_documentation table holds information about attributes in the tables links, link_types, modes, nodes,
and zones.

By default, these attributes are all documented, but further attribues can be added into the table.

The name_table field holds the name of the table that has the attribute

The attribute field holds the name of the attribute

The description field holds the description of the attribute

It is possible to have one attribute with the same name in two different tables. However, one cannot have two attibutes
with the same name within the same table.

Field Type NULL allowed Default Value
name_table TEXT NO
attribute TEXT NO
description TEXT YES

(* - Primary key)

The SQL statement for table and index creation is below.

106 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

CREATE TABLE if not exists attributes_documentation (name_table TEXT NOT NULL,
attribute TEXT NOT NULL,
description TEXT,
UNIQUE (name_table, attribute)
);

CREATE INDEX idx_attributes ON attributes_documentation (name_table, attribute);

link types table structure

The link_types table holds information about the available link types in the network.

The link_type field corresponds to the link type, and it is the table’s primary key

The link_type_id field presents the identification of the link type

The description field holds the description of the link type

The lanes field presents the number or lanes for the link type

The lane_capacity field presents the number of lanes for the link type

The speed field holds information about the speed in the link type Attributes follow

Field Type NULL allowed Default Value
link_type* VARCHAR NO
link_type_id VARCHAR NO
description VARCHAR YES
lanes NUMERIC YES
lane_capacity NUMERIC YES
speed NUMERIC YES

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists link_types (link_type VARCHAR UNIQUE NOT NULL PRIMARY␣
→˓KEY,

link_type_id VARCHAR UNIQUE NOT NULL,
description VARCHAR,
lanes NUMERIC,
lane_capacity NUMERIC,
speed NUMERIC
CHECK(LENGTH(link_type_id) == 1));

INSERT INTO 'link_types' (link_type, link_type_id, description, lanes, lane_capacity)␣
→˓VALUES('centroid_connector', 'z', 'VIRTUAL centroid connectors only', 10, 10000);

INSERT INTO 'link_types' (link_type, link_type_id, description, lanes, lane_capacity)␣
→˓VALUES('default', 'y', 'Default general link type', 2, 900);

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','link_type', 'Link type name. E.g. arterial, or connector');

(continues on next page)

2.3. Project database 107

AequilibraE Documentation

(continued from previous page)

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','link_type_id', 'Single letter identifying the mode. E.g. a, for arterial');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','description', 'Description of the same. E.g. Arterials are streets like␣
→˓AequilibraE Avenue');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','lanes', 'Default number of lanes in each direction. E.g. 2');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','lane_capacity', 'Default vehicle capacity per lane. E.g. 900');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','speed', 'Free flow velocity in m/s');

links table structure

The links table holds all the links available in the aequilibrae network model regardless of the modes allowed on it.

All information on the fields a_node and b_node correspond to a entries in the node_id field in the nodes table. They
are automatically managed with triggers as the user edits the network, but they are not protected by manual editing,
which would break the network if it were to happen.

The modes field is a concatenation of all the ids (mode_id) of the models allowed on each link, and map directly to the
mode_id field in the Modes table. A mode can only be added to a link if it exists in the Modes table.

The link_type corresponds to the link_type field from the link_types table. As it is the case for modes, a link_type can
only be assigned to a link if it exists in the link_types table.

The fields length, node_a and node_b are automatically updated by triggers based in the links’ geometries and node
positions. Link length is always measured in meters.

The table is indexed on link_id (its primary key), node_a and node_b.

Field Type NULL allowed Default Value
ogc_fid* INTEGER YES
link_id INTEGER NO
a_node INTEGER YES
b_node INTEGER YES
direction INTEGER NO 0
distance NUMERIC YES
modes TEXT NO
link_type TEXT YES
name TEXT YES
speed_ab NUMERIC YES
speed_ba NUMERIC YES
travel_time_ab NUMERIC YES
travel_time_ba NUMERIC YES
capacity_ab NUMERIC YES
capacity_ba NUMERIC YES
geometry LINESTRING NO ‘’

(* - Primary key)

The SQL statement for table and index creation is below.

108 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

CREATE TABLE if not exists links (ogc_fid INTEGER PRIMARY KEY,
link_id INTEGER NOT NULL UNIQUE,
a_node INTEGER,
b_node INTEGER,
direction INTEGER NOT NULL DEFAULT 0,
distance NUMERIC,
modes TEXT NOT NULL,
link_type TEXT REFERENCES link_types(link_

→˓type) ON update RESTRICT ON delete RESTRICT,
'name' TEXT,
speed_ab NUMERIC,
speed_ba NUMERIC,
travel_time_ab NUMERIC,
travel_time_ba NUMERIC,
capacity_ab NUMERIC,
capacity_ba NUMERIC
CHECK(TYPEOF(link_id) == 'integer')
CHECK(TYPEOF(a_node) == 'integer')
CHECK(TYPEOF(b_node) == 'integer')
CHECK(TYPEOF(direction) == 'integer')
CHECK(LENGTH(modes)>0)
CHECK(LENGTH(direction)==1));

select AddGeometryColumn('links', 'geometry', 4326, 'LINESTRING', 'XY', 1);

CREATE UNIQUE INDEX idx_link ON links (link_id);

SELECT CreateSpatialIndex('links' , 'geometry');

CREATE INDEX idx_link_anode ON links (a_node);

CREATE INDEX idx_link_bnode ON links (b_node);

CREATE INDEX idx_link_modes ON links (modes);

CREATE INDEX idx_link_link_type ON links (link_type);

CREATE INDEX idx_links_a_node_b_node ON links (a_node, b_node);

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','link_id', 'Unique link ID');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','a_node', 'origin node for the link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','b_node', 'destination node for the link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','direction', 'Flow direction allowed on the link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','distance', 'length of the link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','modes', 'modes allowed on the link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','link_type', 'Link type');

(continues on next page)

2.3. Project database 109

AequilibraE Documentation

(continued from previous page)

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','name', 'Name of the street/link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','speed_*', 'Directional speeds (if allowed)');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','capacity_*', 'Directional link capacities (if allowed)');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','travel_time_*', 'Directional free-flow travel time (if allowed)');

matrices table structure

The matrices table holds infromation about all matrices that exists in the project matrix folder.

The name field presents the name of the table.

The file_name field holds the file name.

The cores field holds the information on the number of cores used.

The procedure field holds the name the the procedure that generated the result (e.g.: Traffic Assignment).

The procedure_id field holds an unique alpha-numeric identifier for this prodecure.

The timestamp field holds the information when the procedure was executed.

The description field holds the user-provided description of the result.

Field Type NULL allowed Default Value
name* TEXT NO
file_name TEXT NO
cores INTEGER NO 1
procedure TEXT YES
procedure_id TEXT YES
timestamp DATETIME YES current_timestamp
description TEXT YES

(* - Primary key)

The SQL statement for table and index creation is below.

create TABLE if not exists matrices (name TEXT NOT NULL PRIMARY KEY,
file_name TEXT NOT NULL UNIQUE,
cores INTEGER NOT NULL DEFAULT 1,
procedure TEXT,
procedure_id TEXT,
timestamp DATETIME DEFAULT current_timestamp,
description TEXT);

CREATE INDEX name_matrices ON matrices (name);

110 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

modes table structure

The modes table holds the information on all the modes available in the model’s network.

The mode_name field contains the descriptive name of the field.

The mode_id field contains a single letter that identifies the mode.

The description field holds the description of the mode.

The pce field holds information on Passenger-Car equivalent for assignment. Defaults to 1.0.

The vot field holds information on Value-of-Time for traffic assignment. Defaults to 0.0.

The ppv field holds information on average persons per vehicle. Defaults to 1.0. ppv can assume value 0 for non-travel
uses. Attributes follow

Field Type NULL allowed Default Value
mode_name VARCHAR NO
mode_id* VARCHAR NO
description VARCHAR YES
pce NUMERIC NO 1.0
vot NUMERIC NO 0
ppv NUMERIC NO 1.0

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists modes (mode_name VARCHAR UNIQUE NOT NULL,
mode_id VARCHAR UNIQUE NOT NULL PRIMARY KEY,
description VARCHAR,
pce NUMERIC NOT NULL DEFAULT 1.0,
vot NUMERIC NOT NULL DEFAULT 0,
ppv NUMERIC NOT NULL DEFAULT 1.0
CHECK(LENGTH(mode_id)==1));

INSERT INTO 'modes' (mode_name, mode_id, description) VALUES('car', 'c', 'All motorized␣
→˓vehicles');
INSERT INTO 'modes' (mode_name, mode_id, description) VALUES('transit', 't', 'Public␣
→˓transport vehicles');
INSERT INTO 'modes' (mode_name, mode_id, description) VALUES('walk', 'w', 'Walking links
→˓');
INSERT INTO 'modes' (mode_name, mode_id, description) VALUES('bicycle', 'b', 'Biking␣
→˓links');

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','mode_name', 'The more descriptive name of the mode (e.g. Bicycle)');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','mode_id', 'Single letter identifying the mode. E.g. b, for Bicycle');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','description', 'Description of the same. E.g. Bicycles used to be human-powered two-
→˓wheeled vehicles');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','pce', 'Passenger-Car equivalent for assignment');

(continues on next page)

2.3. Project database 111

AequilibraE Documentation

(continued from previous page)

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','vot', 'Value-of-Time for traffic assignment of class');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','ppv', 'Average persons per vehicle. (0 for non-travel uses)');

nodes table structure

The nodes table holds all the network nodes available in AequilibraE model.

The node_id field is an identifier of the node.

The is_centroid field holds information if the node is a centroid of a network or not. Assumes values 0 or 1. Defaults
to 0.

The modes field identifies all modes connected to the node.

The link_types field identifies all link types connected to the node.

Field Type NULL allowed Default Value
ogc_fid* INTEGER YES
node_id INTEGER NO
is_centroid INTEGER NO 0
modes TEXT YES
link_types TEXT YES
geometry POINT NO ‘’

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists nodes (ogc_fid INTEGER PRIMARY KEY,
node_id INTEGER UNIQUE NOT NULL,
is_centroid INTEGER NOT NULL DEFAULT 0,
modes TEXT,
link_types TEXT
CHECK(TYPEOF(node_id) == 'integer')
CHECK(TYPEOF(is_centroid) == 'integer')
CHECK(is_centroid>=0)
CHECK(is_centroid<=1));

SELECT AddGeometryColumn('nodes', 'geometry', 4326, 'POINT', 'XY', 1);

SELECT CreateSpatialIndex('nodes' , 'geometry');

CREATE INDEX idx_node ON nodes (node_id);

CREATE INDEX idx_node_is_centroid ON nodes (is_centroid);

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','node_id', 'Unique node ID');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','is_centroid', 'Flag identifying centroids');

(continues on next page)

112 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

(continued from previous page)

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','modes', 'Modes connected to the node');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','link_types', 'Link types connected to the node');

periods table structure

The periods table holds the time periods and their period_id. Default entry with id 1 is the entire day. Attributes follow

Field Type NULL allowed Default Value
period_id INTEGER NO
period_start INTEGER NO
period_end INTEGER NO
period_description TEXT YES

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists periods (period_id INTEGER UNIQUE NOT NULL,
period_start INTEGER NOT NULL,
period_end INTEGER NOT NULL,
period_description TEXT
CHECK(TYPEOF(period_id) == 'integer')
CHECK(TYPEOF(period_start) == 'integer')
CHECK(TYPEOF(period_end) == 'integer'));

INSERT INTO periods (period_id, period_start, period_end, period_description) VALUES(1,␣
→˓0, 86400, 'Default time period, whole day');

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES(
→˓'periods','period_id', 'ID of the time period');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES(
→˓'periods','period_start', 'Start of the time period');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES(
→˓'periods','period_end', 'End of the time period');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES(
→˓'periods','period_description', 'Optional description of the time period');

results table structure

The results table holds the metadata for results stored in results_database.sqlite.

The table_name field presents the actual name of the result table in results_database.sqlite.

The procedure field holds the name the the procedure that generated the result (e.g.: Traffic Assignment).

The procedure_id field holds an unique UUID identifier for this procedure, which is created at runtime.

The procedure_report field holds the output of the complete procedure report.

The timestamp field holds the information when the procedure was executed.

2.3. Project database 113

AequilibraE Documentation

The description field holds the user-provided description of the result.

Field Type NULL allowed Default Value
table_name* TEXT NO
procedure TEXT NO
procedure_id TEXT NO
procedure_report TEXT NO
timestamp DATETIME YES current_timestamp
description TEXT YES

(* - Primary key)

The SQL statement for table and index creation is below.

create TABLE if not exists results (table_name TEXT NOT NULL PRIMARY KEY,
procedure TEXT NOT NULL,
procedure_id TEXT NOT NULL,
procedure_report TEXT NOT NULL,
timestamp DATETIME DEFAULT current_timestamp,
description TEXT);

transit graph configs table structure

The transit_graph_configs table holds configuration parameters for a TransitGraph of a particular period_id Attributes
follow

Field Type NULL allowed Default Value
period_id* INTEGER NO
config TEXT YES

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists transit_graph_configs (period_id INTEGER UNIQUE NOT NULL␣
→˓PRIMARY KEY REFERENCES periods(period_id),

config TEXT);

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES(
→˓'transit_graph_configs','period_id', 'The period this config is associated with.');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES(
→˓'transit_graph_configs','mode_id', 'JSON string containing the configuration␣
→˓parameters.');

114 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

zones table structure

The zones table holds information on the Traffic Analysis Zones (TAZs) in AequilibraE’s model.

The zone_id field identifies the zone.

The area field corresponds to the area of the zone in km2. TAZs’ area is automatically updated by triggers.

The name fields allows one to identity the zone using a name or any other description.

Field Type NULL allowed Default Value
ogc_fid* INTEGER YES
zone_id INTEGER NO
area NUMERIC YES
name TEXT YES
geometry MULTIPOLYGON NO ‘’

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE 'zones' (ogc_fid INTEGER PRIMARY KEY,
zone_id INTEGER UNIQUE NOT NULL,
area NUMERIC,
"name" TEXT);

SELECT AddGeometryColumn('zones', 'geometry', 4326, 'MULTIPOLYGON', 'XY', 1);
CREATE UNIQUE INDEX idx_zone ON zones (zone_id);
SELECT CreateSpatialIndex('zones' , 'geometry');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('zones
→˓','zone_id', 'Unique node ID');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('zones
→˓','area', 'Area of the zone in km2');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('zones
→˓','name', 'Name of the zone, if any');

2.4 Public Transport database

AequilibraE is capable of importing a General Transit Feed Specification (GTFS) feed into its database. The Transit
module has been updated in version 0.9.0. More details on the public_transport.sqlite are discussed on a nearly per-
table basis below, and we recommend understanding the role of each table before setting an AequilibraE model you
intend to use. If you don’t know much about GTFS, we strongly encourage you to take a look at the documentation
provided by Google.

A more technical view of the database structure, including the SQL queries used to create each table and their indices
are also available.

2.4. Public Transport database 115

https://developers.google.com/transit/gtfs

AequilibraE Documentation

2.4.1 SQL Data model

The data model presented in this section pertains only to the structure of AequilibraE’s public_transport database and
general information about the usefulness of specific fields, especially on the interdependency between tables.

Conventions

A few conventions have been adopted in the definition of the data model and some are listed below:

• Geometry field is always called geometry

• Projection is 4326 (WGS84)

• Tables are all in all lower case

Project tables

agencies table structure

The agencies table holds information about the Public Transport agencies within the GTFS data. This table information
comes from GTFS file agency.txt. You can check out more information here.

agency_id identifies the agency for the specified route

agency contains the fuill name of the transit agency

feed_date idicates the date for which the GTFS feed is being imported

service_date indicates the date for the indicate route scheduling

description_field provides useful description of a transit agency

Field Type NULL allowed Default Value
agency_id* INTEGER NO
agency TEXT NO
feed_date TEXT YES
service_date TEXT YES
description TEXT YES

(* - Primary key)

The SQL statement for table and index creation is below.

create TABLE IF NOT EXISTS agencies (
agency_id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
agency TEXT NOT NULL,
feed_date TEXT,
service_date TEXT,
description TEXT

);

create UNIQUE INDEX IF NOT EXISTS transit_operators_id ON agencies (agency_id);

116 Chapter 2. Modeling with AequilibraE

https://developers.google.com/transit/gtfs/reference#agencytxt

AequilibraE Documentation

attributes documentation table structure

The attributes_documentation table holds information about attributes in the tables links, link_types, modes, nodes,
and zones.

By default, these attributes are all documented, but further attribues can be added into the table.

The name_table field holds the name of the table that has the attribute

The attribute field holds the name of the attribute

The description field holds the description of the attribute

It is possible to have one attribute with the same name in two different tables. However, one cannot have two attibutes
with the same name within the same table.

Field Type NULL allowed Default Value
name_table TEXT NO
attribute TEXT NO
description TEXT YES

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists attributes_documentation (name_table TEXT NOT NULL,
attribute TEXT NOT NULL,
description TEXT,
UNIQUE (name_table, attribute)
);

CREATE INDEX idx_attributes ON attributes_documentation (name_table, attribute);

fare attributes table structure

The fare_attributes table holds information about the fare values. This table information comes from the GTFS file
fare_attributes.txt. Given that this file is optional in GTFS, it can be empty. You can check out more information here.

fare_id identifies a fare class

fare describes a fare class

agency_id identifies a relevant agency for a fare.

price especifies the fare price

currency_code especifies the currency used to pay the fare

payment_method indicates when the fare must be paid.

transfer indicates the number of transfers permitted on the fare

transfer_duration indicates the lenght of time in seconds before a transfer expires.

2.4. Public Transport database 117

https://developers.google.com/transit/gtfs/reference#fare_attributestxt

AequilibraE Documentation

Field Type NULL allowed Default Value
fare_id* INTEGER NO
fare TEXT NO
agency_id INTEGER NO
price REAL YES
currency TEXT YES
payment_method INTEGER YES
transfer INTEGER YES
transfer_duration REAL YES

(* - Primary key)

The SQL statement for table and index creation is below.

create TABLE IF NOT EXISTS fare_attributes (
fare_id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
fare TEXT NOT NULL,
agency_id INTEGER NOT NULL,
price REAL,
currency TEXT,
payment_method INTEGER,
transfer INTEGER,
transfer_duration REAL,
FOREIGN KEY(agency_id) REFERENCES agencies(agency_id) deferrable initially deferred

);

CREATE UNIQUE INDEX IF NOT EXISTS fare_transfer_uniqueness ON fare_attributes (fare_id,␣
→˓transfer);

fare rules table structure

The fare_rules table holds information about the fare values. This table information comes from the GTFS file
fare_rules.txt. Given that this file is optional in GTFS, it can be empty.

The fare_id identifies a fare class

The route_id identifies a route associated with the fare class.

The origin field identifies the origin zone

The destination field identifies the destination zone

The contains field identifies the zones that a rider will enter while using a given fare class.

Field Type NULL allowed Default Value
fare_id INTEGER NO
route_id INTEGER YES
origin INTEGER YES
destination INTEGER YES
contains INTEGER YES

(* - Primary key)

118 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

The SQL statement for table and index creation is below.

create TABLE IF NOT EXISTS fare_rules (
fare_id INTEGER NOT NULL,
route_id INTEGER,
origin INTEGER,
destination INTEGER,
contains INTEGER,
FOREIGN KEY(fare_id) REFERENCES fare_attributes(fare_id) deferrable initially␣

→˓deferred,
FOREIGN KEY(route_id) REFERENCES routes(route_id) deferrable initially deferred,
FOREIGN KEY(destination) REFERENCES fare_zones(fare_zone_id) deferrable initially␣

→˓deferred,
FOREIGN KEY(origin) REFERENCES fare_zones(fare_zone_id) deferrable initially␣

→˓deferred,
FOREIGN KEY(contains) REFERENCES fare_zones(fare_zone_id) deferrable initially␣

→˓deferred
);

fare zones table structure

The zones tables holds information on the fare transit zones and the TAZs they are in.

fare_zone_id identifies the fare zone for a stop

transit_zone identifies the TAZ for a fare zone

agency_id identifies the agency fot the specified route

Field Type NULL allowed Default Value
fare_zone_id* INTEGER YES
transit_zone TEXT NO
agency_id INTEGER NO

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE IF NOT EXISTS fare_zones (
fare_zone_id INTEGER PRIMARY KEY,
transit_zone TEXT NOT NULL,
agency_id INTEGER NOT NULL,
FOREIGN KEY(agency_id) REFERENCES agencies(agency_id) deferrable initially deferred

);

2.4. Public Transport database 119

AequilibraE Documentation

link types table structure

The link_types table holds information about the available link types in the network.

The link_type field corresponds to the link type, and it is the table’s primary key

The link_type_id field presents the identification of the link type

The description field holds the description of the link type

The lanes field presents the number or lanes for the link type

The lane_capacity field presents the number of lanes for the link type

The speed field holds information about the speed in the link type Attributes follow

Field Type NULL allowed Default Value
link_type* VARCHAR NO
link_type_id VARCHAR NO
description VARCHAR YES
lanes NUMERIC YES
lane_capacity NUMERIC YES
speed NUMERIC YES

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists link_types (link_type VARCHAR UNIQUE NOT NULL PRIMARY␣
→˓KEY,

link_type_id VARCHAR UNIQUE NOT NULL,
description VARCHAR,
lanes NUMERIC,
lane_capacity NUMERIC,
speed NUMERIC
CHECK(LENGTH(link_type_id) == 1));

INSERT INTO 'link_types' (link_type, link_type_id, description, lanes, lane_capacity)␣
→˓VALUES('centroid_connector', 'z', 'VIRTUAL centroid connectors only', 10, 10000);

INSERT INTO 'link_types' (link_type, link_type_id, description, lanes, lane_capacity)␣
→˓VALUES('default', 'y', 'Default general link type', 2, 900);

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','link_type', 'Link type name. E.g. arterial, or connector');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','link_type_id', 'Single letter identifying the mode. E.g. a, for arterial');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','description', 'Description of the same. E.g. Arterials are streets like␣
→˓AequilibraE Avenue');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','lanes', 'Default number of lanes in each direction. E.g. 2');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','lane_capacity', 'Default vehicle capacity per lane. E.g. 900');

(continues on next page)

120 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

(continued from previous page)

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('link_
→˓types','speed', 'Free flow velocity in m/s');

links table structure

The links table holds all the links available in the aequilibrae network model regardless of the modes allowed on it.

All information on the fields a_node and b_node correspond to a entries in the node_id field in the nodes table. They
are automatically managed with triggers as the user edits the network, but they are not protected by manual editing,
which would break the network if it were to happen.

The modes field is a concatenation of all the ids (mode_id) of the models allowed on each link, and map directly to the
mode_id field in the Modes table. A mode can only be added to a link if it exists in the Modes table.

The link_type corresponds to the link_type field from the link_types table. As it is the case for modes, a link_type can
only be assigned to a link if it exists in the link_types table.

The fields length, node_a and node_b are automatically updated by triggers based in the links’ geometries and node
positions. Link length is always measured in meters.

The table is indexed on link_id (its primary key), node_a and node_b.

Field Type NULL allowed Default Value
ogc_fid* INTEGER YES
link_id INTEGER NO
a_node INTEGER YES
b_node INTEGER YES
direction INTEGER NO 0
distance NUMERIC YES
modes TEXT NO
link_type TEXT YES
line_id TEXT YES
stop_id TEXT YES
line_seg_idx INTEGER YES
trav_time NUMERIC NO
freq NUMERIC NO
o_line_id TEXT YES
d_line_id TEXT YES
transfer_id TEXT YES
geometry LINESTRING NO ‘’

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists links (ogc_fid INTEGER PRIMARY KEY,
link_id INTEGER NOT NULL UNIQUE,
a_node INTEGER,
b_node INTEGER,
direction INTEGER NOT NULL DEFAULT 0,
distance NUMERIC,
modes TEXT NOT NULL,

(continues on next page)

2.4. Public Transport database 121

AequilibraE Documentation

(continued from previous page)

link_type TEXT REFERENCES link_types(link_
→˓type) ON update RESTRICT ON delete RESTRICT,

line_id TEXT,
stop_id TEXT REFERENCES stops(stop) ON␣

→˓update RESTRICT ON delete RESTRICT,
line_seg_idx INTEGER,
trav_time NUMERIC NOT NULL,
freq NUMERIC NOT NULL,
o_line_id TEXT,
d_line_id TEXT,
transfer_id TEXT
CHECK(TYPEOF(link_id) == 'integer')
CHECK(TYPEOF(a_node) == 'integer')
CHECK(TYPEOF(b_node) == 'integer')
CHECK(TYPEOF(direction) == 'integer')
CHECK(LENGTH(modes)>0)
CHECK(LENGTH(direction)==1));

select AddGeometryColumn('links', 'geometry', 4326, 'LINESTRING', 'XY', 1);

CREATE UNIQUE INDEX idx_link ON links (link_id);

SELECT CreateSpatialIndex('links' , 'geometry');

CREATE INDEX idx_link_anode ON links (a_node);

CREATE INDEX idx_link_bnode ON links (b_node);

CREATE INDEX idx_link_modes ON links (modes);

CREATE INDEX idx_link_link_type ON links (link_type);

CREATE INDEX idx_links_a_node_b_node ON links (a_node, b_node);

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','link_id', 'Unique link ID');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','a_node', 'origin node for the link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','b_node', 'destination node for the link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','direction', 'Flow direction allowed on the link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','distance', 'length of the link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','modes', 'modes allowed on the link');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','link_type', 'Link type');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','line_id', 'ID of the line the link belongs to');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','stop_id', 'ID of the stop the link belongss to ');

(continues on next page)

122 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

(continued from previous page)

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','line_seg_idx', 'Line segment index');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','trav_time', 'Travel time');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','freq', 'Frequency of link traversal');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','*_line_id', 'Origin/Destination line ID for transfer links');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('links
→˓','transfer_id', 'Transfer link ID');

modes table structure

The modes table holds the information on all the modes available in the model’s network.

The mode_name field contains the descriptive name of the field.

The mode_id field contains a single letter that identifies the mode.

The description field holds the description of the mode.

The pce field holds information on Passenger-Car equivalent for assignment. Defaults to 1.0.

The vot field holds information on Value-of-Time for traffic assignment. Defaults to 0.0.

The ppv field holds information on average persons per vehicle. Defaults to 1.0. ppv can assume value 0 for non-travel
uses. Attributes follow

Field Type NULL allowed Default Value
mode_name VARCHAR NO
mode_id* VARCHAR NO
description VARCHAR YES
pce NUMERIC NO 1.0
vot NUMERIC NO 0
ppv NUMERIC NO 1.0

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists modes (mode_name VARCHAR UNIQUE NOT NULL,
mode_id VARCHAR UNIQUE NOT NULL PRIMARY KEY,
description VARCHAR,
pce NUMERIC NOT NULL DEFAULT 1.0,
vot NUMERIC NOT NULL DEFAULT 0,
ppv NUMERIC NOT NULL DEFAULT 1.0
CHECK(LENGTH(mode_id)==1));

INSERT INTO 'modes' (mode_name, mode_id, description) VALUES('car', 'c', 'All motorized␣
→˓vehicles');
INSERT INTO 'modes' (mode_name, mode_id, description) VALUES('transit', 't', 'Public␣
→˓transport vehicles');
INSERT INTO 'modes' (mode_name, mode_id, description) VALUES('walk', 'w', 'Walking links

(continues on next page)

2.4. Public Transport database 123

AequilibraE Documentation

(continued from previous page)

→˓');
INSERT INTO 'modes' (mode_name, mode_id, description) VALUES('bicycle', 'b', 'Biking␣
→˓links');

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','mode_name', 'The more descriptive name of the mode (e.g. Bicycle)');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','mode_id', 'Single letter identifying the mode. E.g. b, for Bicycle');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','description', 'Description of the same. E.g. Bicycles used to be human-powered two-
→˓wheeled vehicles');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','pce', 'Passenger-Car equivalent for assignment');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','vot', 'Value-of-Time for traffic assignment of class');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('modes
→˓','ppv', 'Average persons per vehicle. (0 for non-travel uses)');

node types table structure

The node_types table holds information about the available node types in the network.

The node_type field corresponds to the node type, and it is the table’s primary key

The node_type_id field presents the identification of the node type

The description field holds the description of the node type

Attributes follow

Field Type NULL allowed Default Value
node_type* VARCHAR NO
node_type_id VARCHAR NO
description VARCHAR YES

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists node_types (node_type VARCHAR UNIQUE NOT NULL PRIMARY␣
→˓KEY,

node_type_id VARCHAR UNIQUE NOT NULL,
description VARCHAR);

INSERT INTO 'node_types' (node_type, node_type_id, description) VALUES('default', 'y',
→˓'Default general node type');
INSERT INTO 'node_types' (node_type, node_type_id, description) VALUES('od', 'n',
→˓'Origin/Desination node type');
INSERT INTO 'node_types' (node_type, node_type_id, description) VALUES('origin', 'o',
→˓'Origin node type');
INSERT INTO 'node_types' (node_type, node_type_id, description) VALUES('destination', 'd
→˓', 'Desination node type');

(continues on next page)

124 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

(continued from previous page)

INSERT INTO 'node_types' (node_type, node_type_id, description) VALUES('stop', 's',
→˓'Stop node type');
INSERT INTO 'node_types' (node_type, node_type_id, description) VALUES('alighting', 'a',
→˓'Alighting node type');
INSERT INTO 'node_types' (node_type, node_type_id, description) VALUES('boarding', 'b',
→˓'Boarding node type');
INSERT INTO 'node_types' (node_type, node_type_id, description) VALUES('walking', 'w',
→˓'Walking node type');

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('node_
→˓types','node_type', 'Node type name. E.g stop or boarding');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('node_
→˓types','node_type_id', 'Single letter identifying the mode. E.g. a, for alighting');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('node_
→˓types','description', 'Description of the same. E.g. Stop nodes connect ODs and␣
→˓walking nodes to boarding and alighting nodes via boarding and alighting links.');

nodes table structure

The nodes table holds all the network nodes available in AequilibraE transit model.

The node_id field is an identifier of the node.

The is_centroid field holds information if the node is a centroid of a network or not. Assumes values 0 or 1. Defaults
to 0.

The stop_id field indicates which stop this node belongs too. This field is TEXT as it might encode a street name or
such.

The line_id field indicates which line this node belongs too. This field is TEXT as it might encode a street name or
such.

The line_seg_idx field indexes the segment of line line_id. Zero based.

The modes field identifies all modes connected to the node.

The link_type field identifies all link types connected to the node.

The node_type field identifies the types of this node.

The taz_id field is an identifier for the transit assignment zone this node belongs to.

Field Type NULL allowed Default Value
ogc_fid* INTEGER YES
node_id INTEGER NO
is_centroid INTEGER NO 0
stop_id TEXT YES
line_id TEXT YES
line_seg_idx INTEGER YES
modes TEXT YES
link_types TEXT YES
node_type TEXT YES
taz_id TEXT YES
geometry POINT NO ‘’

2.4. Public Transport database 125

AequilibraE Documentation

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists nodes (ogc_fid INTEGER PRIMARY KEY,
node_id INTEGER UNIQUE NOT NULL,
is_centroid INTEGER NOT NULL DEFAULT 0,
stop_id TEXT,
line_id TEXT,
line_seg_idx INTEGER,
modes TEXT,
link_types TEXT,
node_type TEXT,
taz_id TEXT
CHECK(TYPEOF(node_id) == 'integer')
CHECK(TYPEOF(is_centroid) == 'integer')
CHECK(is_centroid>=0)
CHECK(is_centroid<=1));

SELECT AddGeometryColumn('nodes', 'geometry', 4326, 'POINT', 'XY', 1);

SELECT CreateSpatialIndex('nodes' , 'geometry');

CREATE INDEX idx_node ON nodes (node_id);

CREATE INDEX idx_node_is_centroid ON nodes (is_centroid);

INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','node_id', 'Unique node ID');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','is_centroid', 'Flag identifying centroids');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','stop_id', 'ID of the Stop this node belongs to');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','line_id', 'ID of the Line this node belongs to');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','line_seg_idx', 'Index of the line segement this node belongs to');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','modes', 'Modes connected to the node');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','link_types', 'Link types connected to the node');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','node_type', 'Node types of this node');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES('nodes
→˓','taz_id', 'Transit assignemnt zone id');

126 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

pattern mapping table structure

The pattern_mapping table holds information on the stop pattern for each route.

pattern_id is an unique pattern for the route

seq identifies the sequence of the stops for a trip

link identifies the link_id in the links table that corresponds to the pattern matching

dir indicates the direction of travel for a trip

Field Type NULL allowed Default Value
pattern_id* INTEGER NO
seq INTEGER NO
link INTEGER NO
dir INTEGER NO
geometry LINESTRING YES

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE IF NOT EXISTS pattern_mapping (
pattern_id INTEGER NOT NULL,
seq INTEGER NOT NULL,
link INTEGER NOT NULL,
dir INTEGER NOT NULL,
PRIMARY KEY(pattern_id, "seq"),
FOREIGN KEY(pattern_id) REFERENCES routes (pattern_id) deferrable initially␣

→˓deferred,
FOREIGN KEY(link) REFERENCES route_links (link) deferrable initially deferred

);

SELECT AddGeometryColumn('pattern_mapping', 'geometry', 4326, 'LINESTRING', 'XY');

SELECT CreateSpatialIndex('pattern_mapping' , 'geometry');

results table structure

The results table holds the metadata for results stored in results_database.sqlite.

The table_name field presents the actual name of the result table in results_database.sqlite.

The procedure field holds the name the the procedure that generated the result (e.g.: Traffic Assignment).

The procedure_id field holds an unique UUID identifier for this procedure, which is created at runtime.

The procedure_report field holds the output of the complete procedure report.

The timestamp field holds the information when the procedure was executed.

The description field holds the user-provided description of the result.

2.4. Public Transport database 127

AequilibraE Documentation

Field Type NULL allowed Default Value
table_name* TEXT NO
procedure TEXT NO
procedure_id TEXT NO
procedure_report TEXT NO
timestamp DATETIME YES current_timestamp
description TEXT YES

(* - Primary key)

The SQL statement for table and index creation is below.

create TABLE if not exists results (table_name TEXT NOT NULL PRIMARY KEY,
procedure TEXT NOT NULL,
procedure_id TEXT NOT NULL,
procedure_report TEXT NOT NULL,
timestamp DATETIME DEFAULT current_timestamp,
description TEXT);

route links table structure

The route_links table holds information on the links of a route.

transit_link identifies the GTFS transit links for the route

pattern_id is an unique pattern for the route

seq identifies the sequence of the stops for a trip

from_stop identifies the stop the vehicle is departing

to_stop identifies the next stop the vehicle is going to arrive

distance identifies the distance (in meters) the vehicle travel between the stops

Field Type NULL allowed Default Value
transit_link INTEGER NO
pattern_id INTEGER NO
seq INTEGER NO
from_stop INTEGER NO
to_stop INTEGER NO
distance INTEGER NO
geometry LINESTRING YES

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE IF NOT EXISTS route_links (
transit_link INTEGER NOT NULL,
pattern_id INTEGER NOT NULL,
seq INTEGER NOT NULL,
from_stop INTEGER NOT NULL,

(continues on next page)

128 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

(continued from previous page)

to_stop INTEGER NOT NULL,
distance INTEGER NOT NULL,
FOREIGN KEY(pattern_id) REFERENCES "routes"(pattern_id) deferrable initially␣

→˓deferred,
FOREIGN KEY(from_stop) REFERENCES "stops"(stop_id) deferrable initially deferred
FOREIGN KEY(to_stop) REFERENCES "stops"(stop_id) deferrable initially deferred

);

create UNIQUE INDEX IF NOT EXISTS route_links_stop_id ON route_links (pattern_id,␣
→˓transit_link);

select AddGeometryColumn('route_links', 'geometry', 4326, 'LINESTRING', 'XY');

select CreateSpatialIndex('route_links' , 'geometry');

routes table structure

The routes table holds information on the available transit routes for a specific day. This table information comes from
the GTFS file routes.txt. You can find more information about it here.

pattern_id is an unique pattern for the route

route_id identifies a route

route identifies the name of a route

agency_id identifies the agency for the specified route

shortname identifies the short name of a route

longname identifies the long name of a route

description provides useful description of a route

route_type indicates the type of transportation used on a route

pce indicates the passenger car equivalent for transportation used on a route

seated_capacity indicates the seated capacity of a route

total_capacity indicates the total capacity of a route

Field Type NULL allowed Default Value
pattern_id* INTEGER NO
route_id INTEGER NO
route TEXT NO
agency_id INTEGER NO
shortname TEXT YES
longname TEXT YES
description TEXT YES
route_type INTEGER NO
pce NUMERIC NO 2.0
seated_capacity INTEGER YES
total_capacity INTEGER YES
geometry MULTILINESTRING YES

2.4. Public Transport database 129

https://developers.google.com/transit/gtfs/reference#routestxt

AequilibraE Documentation

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE IF NOT EXISTS routes (
pattern_id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
route_id INTEGER NOT NULL,
route TEXT NOT NULL,
agency_id INTEGER NOT NULL,
shortname TEXT,
longname TEXT,
description TEXT,
route_type INTEGER NOT NULL,
pce NUMERIC NOT NULL DEFAULT 2.0,
seated_capacity INTEGER,
total_capacity INTEGER,
FOREIGN KEY(agency_id) REFERENCES agencies(agency_id) deferrable initially deferred

);

select AddGeometryColumn('routes', 'geometry', 4326, 'MULTILINESTRING', 'XY');

select CreateSpatialIndex('routes' , 'geometry');

stop connectors table structure

The stops_connectors table holds information on the connection of the GTFS network with the real network.

id_from identifies the network link the vehicle departs

id_to identifies the network link th vehicle is heading to

conn_type identifies the type of connection used to connect the links

traversal_time represents the time spent crossing the link

penalty_cost identifies the penalty in the connection

Field Type NULL allowed Default Value
id_from INTEGER NO
id_to INTEGER NO
conn_type INTEGER NO
traversal_time INTEGER NO
penalty_cost INTEGER NO
geometry LINESTRING NO ‘’

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE IF NOT EXISTS stop_connectors (
id_from INTEGER NOT NULL,
id_to INTEGER NOT NULL,
traversal_time INTEGER NOT NULL,
penalty_cost INTEGER NOT NULL);

(continues on next page)

130 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

(continued from previous page)

SELECT AddGeometryColumn('stop_connectors', 'geometry', 4326, 'LINESTRING', 'XY', 1);

SELECT CreateSpatialIndex('stop_connectors' , 'geometry');

CREATE INDEX IF NOT EXISTS stop_connectors_id_from ON stop_connectors (id_from);

CREATE INDEX IF NOT EXISTS stop_connectors_id_to ON stop_connectors (id_to);

stops table structure

The stops table holds information on the stops where vehicles pick up or drop off riders. This table information comes
from the GTFS file stops.txt. You can find more information about it here.

stop_id is an unique identifier for a stop

stop idenfifies a stop, statio, or station entrance

agency_id identifies the agency fot the specified route

link identifies the link_id in the links table that corresponds to the pattern matching

dir indicates the direction of travel for a trip

name identifies the name of a stop

parent_station defines hierarchy between different locations defined in stops.txt.

description provides useful description of the stop location

street identifies the address of a stop

fare_zone_id identifies the fare zone for a stop

transit_zone identifies the TAZ for a fare zone

route_type indicates the type of transporation used on a route

Field Type NULL allowed Default Value
stop_id* TEXT YES
stop TEXT NO
agency_id INTEGER NO
link INTEGER YES
dir INTEGER YES
name TEXT YES
parent_station TEXT YES
description TEXT YES
street TEXT YES
fare_zone_id INTEGER YES
transit_zone TEXT YES
route_type INTEGER NO -1
geometry POINT NO ‘’

(* - Primary key)

The SQL statement for table and index creation is below.

2.4. Public Transport database 131

https://developers.google.com/transit/gtfs/reference#stopstxt

AequilibraE Documentation

CREATE TABLE IF NOT EXISTS stops (
stop_id TEXT PRIMARY KEY,
stop TEXT NOT NULL ,
agency_id INTEGER NOT NULL,
link INTEGER,
dir INTEGER,
name TEXT,
parent_station TEXT,
description TEXT,
street TEXT,
fare_zone_id INTEGER,
transit_zone TEXT,
route_type INTEGER NOT NULL DEFAULT -1,
FOREIGN KEY(agency_id) REFERENCES agencies(agency_id),
FOREIGN KEY("fare_zone_id") REFERENCES fare_zones("fare_zone_id")

);

create INDEX IF NOT EXISTS stops_stop_id ON stops (stop_id);

select AddGeometryColumn('stops', 'geometry', 4326, 'POINT', 'XY', 1);

select CreateSpatialIndex('stops' , 'geometry');

trigger settings table structure

This table intends to allow the enabled and disabling of certain triggers

Field Type NULL allowed Default Value
name* TEXT YES
enabled INTEGER NO TRUE

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE if not exists trigger_settings (name TEXT PRIMARY KEY, enabled INTEGER NOT␣
→˓NULL DEFAULT TRUE);
INSERT INTO trigger_settings (name, enabled) VALUES('new_link_a_or_b_node', TRUE);
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES(
→˓'trigger_settings', 'name', 'name for trigger to query against');
INSERT INTO 'attributes_documentation' (name_table, attribute, description) VALUES(
→˓'trigger_settings', 'enabled', 'boolean value');

132 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

trips table structure

The trips table holds information on trips for each route. This table comes from the GTFS file trips.txt. You can find
more information about it here.

trip_id identifies a trip

trip identifies the trip to a rider

dir indicates the direction of travel for a trip

pattern_id is an unique pattern for the route

Field Type NULL allowed Default Value
trip_id* INTEGER NO
trip TEXT YES
dir INTEGER NO
pattern_id INTEGER NO

(* - Primary key)

The SQL statement for table and index creation is below.

CREATE TABLE IF NOT EXISTS trips (
trip_id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
trip TEXT,
dir INTEGER NOT NULL,
pattern_id INTEGER NOT NULL,
FOREIGN KEY(pattern_id) REFERENCES routes(pattern_id) deferrable initially deferred

);

trips schedule table structure

The trips_schedule table holds information on the sequence of stops of a trip.

trip_id is an unique identifier of a trip

seq identifies the sequence of the stops for a trip

arrival identifies the arrival time at the stop

departure identifies the departure time at the stop

Field Type NULL allowed Default Value
trip_id* INTEGER NO
seq INTEGER NO
arrival INTEGER NO
departure INTEGER NO

(* - Primary key)

The SQL statement for table and index creation is below.

2.4. Public Transport database 133

https://developers.google.com/transit/gtfs/reference#tripstxt

AequilibraE Documentation

CREATE TABLE IF NOT EXISTS trips_schedule (
trip_id INTEGER NOT NULL,
seq INTEGER NOT NULL,
arrival INTEGER NOT NULL,
departure INTEGER NOT NULL,
PRIMARY KEY(trip_id,"seq"),
FOREIGN KEY(trip_id) REFERENCES trips(trip_id) deferrable initially deferred

);

2.5 Static Traffic Assignment

Performing static traffic assignment with AequilibraE is not dissimilar than doing so with traditional commercial pack-
ages, as we strive to make it as easy as possible for seasoned modelers to migrate their models and workflows to
AequilibraE.

Although modeling with AequilibraE should feel somewhat familiar to seasoned modelers, especially those used to
programming, the mechanics of traffic assignment in AequilibraE might be foreign to some users, so this section of the
documentation will include discussions of the mechanics of some of these procedures and some light discussion on its
motivation.

Further, many AequilibraE users are new to the craft, so we have elected to start creating documentation on the most
important topics in the transportation modeling practice, where we detail how these concepts are translated into the
AequilibraE tools and recommended workflows.

2.5.1 Multi-class Equilibrium assignment

While single-class equilibrium traffic assignment1 is mathematically simple, multi-class traffic assignment7, especially
when including monetary costs (e.g. tolls) and multiple classes with different Passenger Car Equivalent (PCE) factors,
requires more sophisticated mathematics.

As it is to be expected, strict convergence of multi-class equilibrium assignments comes at the cost of specific technical
requirements and more advanced equilibration algorithms have slightly different requirements.

Cost function

AequilibraE supports class-=specific cost functions, where each class can include the following:

• PCE

• Link-based fixed financial cost components

• Value-of-Time (VoT)
1 Wardrop J. G. (1952) “Some theoretical aspects of road traffic research.” Proceedings of the Institution of Civil Engineers 1952, 1(3):325-362.

Available in: https://www.icevirtuallibrary.com/doi/abs/10.1680/ipeds.1952.11259
7 Marcotte, P., Patriksson, M. (2007) “Chapter 10 Traffic Equilibrium - Handbooks in Operations Research and Management Science, Vol 14”,

Elsevier. Editors Barnhart, C., Laporte, G. https://doi.org/10.1016/S0927-0507(06)14010-4

134 Chapter 2. Modeling with AequilibraE

https://www.icevirtuallibrary.com/doi/abs/10.1680/ipeds.1952.11259
https://doi.org/10.1016/S0927-0507(06)14010-4

AequilibraE Documentation

Technical requirements

This documentation is not intended to discuss in detail the mathematical requirements of multi-class traffic assignment,
which can be found discussed in detail on4.

A few requirements, however, need to be made clear.

• All traffic classes shall have identical free-flow travel times throughout the network

• Each class shall have an unique Passenger Car Equivalency (PCE) factor for all links

• Volume delay functions shall be monotonically increasing. Well behaved functions are always something we are
after

For the conjugate and Biconjugate Frank-Wolfe algorithms it is also necessary that the VDFs are differentiable.

Convergence criteria

Convergence in AequilibraE is measured solely in terms of relative gap, which is a somewhat old recommendation5,
but it is still the most used measure in practice, and is detailed below.

𝑅𝑒𝑙𝐺𝑎𝑝 =

∑︀
𝑎 𝑉

*
𝑎 * 𝐶𝑎 −

∑︀
𝑎 𝑉

𝐴𝑜𝑁
𝑎 * 𝐶𝑎∑︀

𝑎 𝑉
*
𝑎 * 𝐶𝑎

The algorithm’s two stop criteria currently used are the maximum number of iterations and the target Relative Gap, as
specified above. These two parameters are described in detail in the Assignment section, in the Parameters YAML File.

Algorithms available

All algorithms have been implemented as a single software class, as the differences between them are simply the step
direction and step size after each iteration of all-or-nothing assignment, as shown in the table below

Algorithm Step direction Step size
Method of Successive
Avergaes

All-or-Nothing Assignment (AoN) Function of the iteration number

Frank-Wolfe All-or-Nothing Assignment (AoN) Optimal value derived from Wardrop’s
principle

Conjugate Frank-Wolfe Conjugate direction (Current and previous
AoN)

Optimal value derived from Wardrop’s
principle

Biconjugate Frank-Wolfe Biconjugate direction (Current and two pre-
vious AoN)

Optimal value derived from Wardrop’s
principle

Note

Our implementations of the conjugate and Biconjugate-Frank-Wolfe methods should be inherently proportional6,
but we have not yet carried the appropriate testing that would be required for an empirical proof.

4 Zill, J., Camargo, P., Veitch, T., Daisy,N. (2019) “Toll Choice and Stochastic User Equilibrium: Ticking All the Boxes”, Transportation Research
Record, 2673(4):930-940. Available in: https://doi.org/10.1177%2F0361198119837496

5 Rose, G., Daskin, M., Koppelman, F. (1988) “An examination of convergence error in equilibrium traffic assignment models”, Transportation
Research Part B, 22(4):261-274. Available in: https://doi.org/10.1016/0191-2615(88)90003-3

6 Florian, M., Morosan, C.D. (2014) “On uniqueness and proportionality in multi-class equilibrium assignment”, Transportation Research Part
B, 70:261-274. Available in: https://doi.org/10.1016/j.trb.2014.06.011

2.5. Static Traffic Assignment 135

https://doi.org/10.1177%2F0361198119837496
https://doi.org/10.1016/0191-2615(88)90003-3
https://doi.org/10.1016/j.trb.2014.06.011

AequilibraE Documentation

Method of Successive Averages (MSA)

This algorithm has been included largely for historical reasons, and we see very little reason to use it. Yet, it has
been implemented with the appropriate computation of relative gap computation and supports all the analysis features
available.

Frank-Wolfe (FW)

The implementation of Frank-Wolfe in AequilibraE is extremely simple from an implementation point of view, as we
use a generic optimizer from SciPy as an engine for the line search, and it is a standard implementation of the algorithm
introduced by LeBlanc in 19752.

Conjugate Frank-Wolfe

The conjugate direction algorithm was introduced in 20133, which is quite recent if you consider that the Frank-Wolfe
algorithm was first applied in the early 1970’s, and it was introduced at the same as its Biconjugate evolution, so it was
born outdated.

Biconjugate Frank-Wolfe

The Biconjugate Frank-Wolfe algorithm is currently the fastest converging link- based traffic assignment algorithm used
in practice, and it is the recommended algorithm for AequilibraE users. Due to its need for previous iteration data, it
requires more memory during runtime, but very large networks should still fit nicely in systems with 16Gb of RAM.

Implementation details & tricks

A few implementation details and tricks are worth mentioning not because they are needed to use the software, but
because they were things we grappled with during implementation, and it would be a shame not register it for those
looking to implement their own variations of this algorithm or to slight change it for their own purposes.

• The relative gap is computed with the cost used to compute the All-or-Nothing portion of the iteration, and
although the literature on this is obvious, we took some time to realize that we should re-compute the travel costs
only AFTER checking for convergence.

• In some instances, Frank-Wolfe is extremely unstable during the first iterations on assignment, resulting on nu-
merical errors on our line search. We found that setting the step size to the corresponding MSA value (1/ current
iteration) resulted in the problem quickly becoming stable and moving towards a state where the line search started
working properly. This technique was generalized to the conjugate and biconjugate Frank-Wolfe algorithms.

2 LeBlanc L. J., Morlok E. K. and Pierskalla W. P. (1975) “An efficient approach to solving the road network equilibrium traffic assignment
problem”. Transportation Research, 9(5):309-318. Available in: https://doi.org/10.1016/0041-1647(75)90030-1

3 Mitradjieva, M. and Lindberg, P.O. (2013) “The Stiff Is Moving—Conjugate Direction Frank-Wolfe Methods with Applications to Traffic
Assignment”. Transportation Science, 47(2):280-293. Available in: https://doi.org/10.1287/trsc.1120.0409

136 Chapter 2. Modeling with AequilibraE

https://doi.org/10.1016/0041-1647(75)90030-1
https://doi.org/10.1287/trsc.1120.0409

AequilibraE Documentation

Multi-threaded implementation

AequilibraE’s All-or-Nothing assignment (the basis of all the other algorithms) has been parallelized in Python using
the threading library, which is possible due to the work we have done with memory management to release Python’s
Global Interpreter Lock. Other opportunities for parallelization, such as the computation of costs and its derivatives
(required during the line-search optimization step), as well as all linear combination operations for vectors and matrices
have been achieved through the use of OpenMP in pure Cython code. These implementations can be cound on a file
called parallel_numpy.pyx if you are curious to look at.

Much of the gains of going back to Cython to parallelize these functions came from making in-place computation using
previously existing arrays, as the instantiation of large NumPy arrays can be computationally expensive.

Handling the network

The other important topic when dealing with multi-class assignment is to have a single consistent handling of networks,
as in the end there is only physical network across all modes, regardless of access differences to each mode (e.g. truck
lanes, High-Occupancy Lanes, etc.). This handling is often done with something called a super-network.

Super-network

We deal with a super-network by having all classes with the same links in their sub-graphs, but assigning b_node
identical to a_node for all links whenever a link is not available for a certain user class. This approach is slightly less
efficient when we are computing shortest paths, but it gets eliminated when topologically compressing the network for
centroid-to-centroid path computation and it is a LOT more efficient when we are aggregating flows.

The use of the AequilibraE project and its built-in methods to build graphs ensure that all graphs will be built in a
consistent manner and multi-class assignment is possible.

References

Traffic assignment and equilibrium

2.5.2 Path-finding and assignment mechanics

Performing traffic assignment, or even just computing paths through a network is always a little different in each plat-
form, and in AequilibraE is not different.

The complexity in computing paths through a network comes from the fact that transportation models usually house
networks for multiple transport modes, so the toads (links) available for a passenger car may be different than those
available for a heavy truck, as it happens in practice.

For this reason, all path computation in AequilibraE happens through Graph objects. While users can operate models
by simply selecting the mode they want AequilibraE to create graphs for, Graph objects can also be manipulated in
memory or even created from networks that are NOT housed inside an AequilibraE model.

2.5. Static Traffic Assignment 137

AequilibraE Documentation

AequilibraE Graphs

As mentioned above, AequilibraE’s graphs are the backbone of path computation, skimming and Traffic Assignment.
Besides handling the selection of links available to each mode in an AequilibraE model, Graphs also handle the
existence of bi-directional links with direction-specific characteristics (e.g. speed limit, congestion levels, tolls, etc.).

The Graph object is rather complex, but the difference between the physical links and those that are available two class
member variables consisting of Pandas DataFrames, the *network and the graph.

from aequilibrae.paths import Graph

g = Graph()

g.network
g.graph

Directionality

Links in the Network table (the Pandas representation of the project’s Links table) are potentially bi-directional, and
the directions allowed for traversal are dictated by the field direction, where -1 and 1 denote only BA and AB traversal
respectively and 0 denotes bi-directionality.

Direction-specific fields must be coded in fields _AB and _BA, where the name of the field in the graph will be equal
to the prefix of the directional fields. For example:

The fields free_flow_travel_time_AB and free_flow_travel_time_BA provide the same metric
(free_flow_travel_time) for each of the directions of a link, and the field of the graph used to set computations
(e.g. field to minimize during path-finding, skimming, etc.) will be free_flow_travel_time.

Graphs from a model

Building graphs directly from an AequilibraE model is the easiest option for beginners or when using AequilibraE in
anger, as much of the setup is done by default.

from aequilibrae import Project

project = Project.from_path("/tmp/test_project")
project.network.build_graphs(modes=["c"]) # We build the graph for cars only

graph = project.network.graphs['c'] # we grab the graph for cars

Manipulating graphs in memory

As mentioned before, the AequilibraE Graph can be manipulated in memory, with all its components available for
editing. One of the simple tools available directly in the API is a method call for excluding one or more links from the
Graph, which is done in place.

graph.exclude_links([123, 975])

More sophisticated graph editing is also possible, but it is recommended that changes to be made in the network
DataFrame. For example:

138 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

graph.network.loc[graph.network.link_type="highway", "speed_AB"] = 100
graph.network.loc[graph.network.link_type="highway", "speed_BA"] = 100

graph.prepare_graph(graph.centroids)
if graph.skim_fields:

graph.set_skimming(graph.skim_fields)

Skimming settings

Skimming the field of a graph when computing shortest path or performing traffic assignment must be done by setting
the skimming fields in the Graph object, and there are no limits (other than memory) to the number of fields that can
be skimmed.

graph.set_skimming(["tolls", "distance", "free_flow_travel_time"])

Setting centroids

Like other elements of the AequilibraE Graph, the user can also manipulate the set of nodes interpreted by the software
as centroids in the Graph itself. This brings the advantage of allowing the user to perform assignment of partial ma-
trices, matrices of travel between arbitrary network nodes and to skim the network for an arbitrary number of centroids
in parallel, which can be useful when using AequilibraE as part of more general analysis pipelines. As seen above, this
is also necessary when the network has been manipulated in memory.

When setting regular network nodes as centroids, the user should take care in not blocking flows through “centroids”.

graph.prepare_graph(np.array([13, 169, 2197, 28561, 371293], np.int))
graph.set_blocked_centroid_flows(False)

Traffic Assignment Procedure

Along with a network data model, traffic assignment is the most technically challenging portion to develop in a modeling
platform, especially if you want it to be FAST. In AequilibraE, we aim to make it as fast as possible, without making
it overly complex to use, develop and maintain (we know complex is subjective).

Below we detail the components that go into performing traffic assignment, but for a comprehensive use case for the
traffic assignment module, please see the complete application in this example.

Traffic Assignment Class

Traffic assignment is organized within a object introduces on version 0.6.1 of the AequilibraE, and includes a small
list of member variables which should be populated by the user, providing a complete specification of the assignment
procedure:

• classes: List of objects Traffic class , each of which are a completely specified traffic class

• vdf : The Volume delay function (VDF) to be used

• vdf_parameters: The parameters to be used in the volume delay function, other than volume, capacity and free
flow time

2.5. Static Traffic Assignment 139

AequilibraE Documentation

• time_field: The field of the graph that corresponds to free-flow travel time. The procedure will collect this
information from the graph associated with the first traffic class provided, but will check if all graphs have the
same information on free-flow travel time

• capacity_field: The field of the graph that corresponds to link capacity. The procedure will collect this infor-
mation from the graph associated with the first traffic class provided, but will check if all graphs have the same
information on capacity

• algorithm: The assignment algorithm to be used. (e.g. “all-or-nothing”, “bfw”)

Assignment parameters such as maximum number of iterations and target relative gap come from the global software
parameters, that can be set using the Parameters YAML File .

There are also some strict technical requirements for formulating the multi-class equilibrium assignment as an uncon-
strained convex optimization problem, as we have implemented it. These requirements are loosely listed in Technical
requirements .

If you want to see the assignment log on your terminal during the assignment, please look in the logging to terminal
example.

To begin building the assignment it is easy:

from aequilibrae.paths import TrafficAssignment

assig = TrafficAssignment()

Volume Delay Function

For now, the only VDF functions available in AequilibraE are the

• BPR3

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑇 𝑖𝑚𝑒𝑖 = 𝐹𝑟𝑒𝑒𝐹 𝑙𝑜𝑤𝑇𝑖𝑚𝑒𝑖 * (1 + 𝛼 * (𝑉 𝑜𝑙𝑢𝑚𝑒𝑖
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖

)𝛽)

• Spiess’ conical2

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑇 𝑖𝑚𝑒𝑖 = 𝐹𝑟𝑒𝑒𝐹 𝑙𝑜𝑤𝑇𝑖𝑚𝑒𝑖 * (2 + 2
√︀
[𝛼2 * (1− 𝑉 𝑜𝑙𝑢𝑚𝑒𝑖

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖
)2 + 𝛽2]− 𝛼 * (1− 𝑉 𝑜𝑙𝑢𝑚𝑒𝑖

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖
)− 𝛽)

• and French INRETS (alpha < 1)

Before capacity

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑇 𝑖𝑚𝑒𝑖 = 𝐹𝑟𝑒𝑒𝐹 𝑙𝑜𝑤𝑇𝑖𝑚𝑒𝑖 *
1.1− (𝛼 * 𝑉 𝑜𝑙𝑢𝑚𝑒𝑖

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖
)

1.1− 𝑉 𝑜𝑙𝑢𝑚𝑒𝑖
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖

and after capacity

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑇 𝑖𝑚𝑒𝑖 = 𝐹𝑟𝑒𝑒𝐹 𝑙𝑜𝑤𝑇𝑖𝑚𝑒𝑖 *
1.1− 𝛼

0.1
* (𝑉 𝑜𝑙𝑢𝑚𝑒𝑖

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖
)2

More functions will be added as needed/requested/possible.

Setting the volume delay function is one of the first things you should do after instantiating an assignment problem in
AequilibraE, and it is as simple as:

3 Hampton Roads Transportation Planning Organization, Regional Travel Demand Model V2 (2020). Available in: https://www.hrtpo.org/
uploads/docs/2020_HamptonRoads_Modelv2_MethodologyReport.pdf

2 Spiess H. (1990) “Technical Note—Conical Volume-Delay Functions.”Transportation Science, 24(2): 153-158. Available in: https://doi.org/
10.1287/trsc.24.2.153

140 Chapter 2. Modeling with AequilibraE

https://www.hrtpo.org/uploads/docs/2020_HamptonRoads_Modelv2_MethodologyReport.pdf
https://www.hrtpo.org/uploads/docs/2020_HamptonRoads_Modelv2_MethodologyReport.pdf
https://doi.org/10.1287/trsc.24.2.153
https://doi.org/10.1287/trsc.24.2.153

AequilibraE Documentation

assig.set_vdf('BPR')

The implementation of the VDF functions in AequilibraE is written in Cython and fully multi-threaded, and therefore
descent methods that may evaluate such function multiple times per iteration should not become unecessarily slow,
especially in modern multi-core systems.

Traffic class

The Traffic class object holds all the information pertaining to a specific traffic class to be assigned. There are three
pieces of information that are required in the instantiation of this class:

• name - Name of the class. Unique among all classes used in a multi-class traffic assignment

• graph - It is the Graph object corresponding to that particular traffic class/ mode

• matrix - It is the AequilibraE matrix with the demand for that traffic class, but which can have an arbitrary
number of user-classes, setup as different layers of the matrix object

Example:

tc = TrafficClass("car", graph_car, matrix_car)

tc2 = TrafficClass("truck", graph_truck, matrix_truck)

• pce - The passenger-car equivalent is the standard way of modeling multi-class traffic assignment equilibrium
in a consistent manner (see1 for the technical detail), and it is set to 1 by default. If the pce for a certain class
should be different than one, one can make a quick method call.

• fixed_cost - In case there are fixed costs associated with the traversal of links in the network, the user can provide
the name of the field in the graph that contains that network.

• vot - Value-of-Time (VoT) is the mechanism to bring time and monetary costs into a consistent basis within a
generalized cost function.in the event that fixed cost is measured in the same unit as free-flow travel time, then
vot must be set to 1.0, and can be set to the appropriate value (1.0, value-of-timeIf the vot or whatever conversion
factor is appropriate) with a method call.

tc2.set_pce(2.5)
tc2.set_fixed_cost("truck_toll")
tc2.set_vot(0.35)

To add traffic classes to the assignment instance it is just a matter of making a method call:

assig.set_classes([tc, tc2])

1 Zill, J., Camargo, P., Veitch, T., Daisy,N. (2019) “Toll Choice and Stochastic User Equilibrium: Ticking All the Boxes”, Transportation Research
Record, 2673(4):930-940. Available in: https://doi.org/10.1177%2F0361198119837496

2.5. Static Traffic Assignment 141

https://doi.org/10.1177%2F0361198119837496

AequilibraE Documentation

Setting VDF Parameters

Parameters for VDF functions can be passed as a fixed value to use for all links, or as graph fields. As it is the case for
the travel time and capacity fields, VDF parameters need to be consistent across all graphs.

Because AequilibraE supports different parameters for each link, its implementation is the most general possible while
still preserving the desired properties for multi-class assignment, but the user needs to provide individual values for
each link OR a single value for the entire network.

Setting the VDF parameters should be done AFTER setting the VDF function of choice and adding traffic classes to
the assignment, or it will fail.

To choose a field that exists in the graph, we just pass the parameters as follows:

assig.set_vdf_parameters({"alpha": "alphas", "beta": "betas"})

To pass global values, it is simply a matter of doing the following:

assig.set_vdf_parameters({"alpha": 0.15, "beta": 4})

Setting final parameters

There are still three parameters missing for the assignment.

• Capacity field

• Travel time field

• Equilibrium algorithm to use

assig.set_capacity_field("capacity")
assig.set_time_field("free_flow_time")
assig.set_algorithm(algorithm)

Setting Preloads

We can also optionally include a preload vector for constant flows which are not being otherwise modelled. For example,
this can be used to account for scheduled public transport vehicles, adding an equivalent load to each link along the
route accordingly. AequilibraE supports various conditions for which PT trips to include in the preload, and allows the
user to specify the PCE for each type of vehicle in the public transport network.

To create a preload for public transport vehicles operating between 8am to 10am, do the following:

Times are specified in seconds from midnight
transit = Transit(project)
preload = transit.build_pt_preload(start=8*3600, end=10*3600)

Next, add the preload to the assignment.

assig.add_preload(preload, 'PT_vehicles')

142 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

Executing an Assignment

Finally, one can execute assignment:

assig.execute()

Convergence criteria is discussed in a different section.

References

2.6 Transit assignment

2.6.1 Hyperpath routing in the context of transit assignment

How do transit passengers choose their routes in a complex network of lines and services? How can we estimate the
distribution of passenger flows and the performance of transit systems? These are some of the questions that transit
assignment models aim to answer. Transit assignment models are mathematical tools that predict how passengers
behave and travel in a transit network, given some assumptions and inputs.

One of the basic concepts in transit assignment models is hyperpath routing. Hyperpath routing is a way of representing
the set of optimal routes that a passenger can take from an origin to a destination, based on some criterion such as travel
time or generalized cost. A hyperpath is a collection of links that form a subgraph of the transit network. Each link in
the hyperpath also has a probability of being used by the passenger, which reflects the attractiveness and uncertainty
of the route choice. The shortest hyperpath is optimal regarding the combination of paths weighted by the probability
of being used.

Hyperpath routing can be applied to different types of transit assignment models, but in this following page we will
focus on frequency-based models. Frequency-based models assume that passengers do not have reliable information
about the service schedules and arrival times, and they choose their routes based on the expected travel time or cost.
This type of model is suitable for transit systems with rather frequent services.

To illustrate how hyperpath routing works in frequency-based models, we will use the classic algorithm by Spiess &
Florian1 implemented in AequilibraE.

We will use a simple grid network as an Python example to demonstrate how a hyperpath depends on link frequency for
a given origin-destination pair. Note that it can be extended to other contexts such as risk-averse vehicle navigation2.

Let’s start by importing some Python packages.

Imports

import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import pandas as pd
from aequilibrae.paths.public_transport import HyperpathGenerating
from numba import jit

(continues on next page)

1 Spiess, H., Florian, M. (1989) “Optimal strategies: A new assignment model for transit networks”. Transportation Research Part B: Method-
ological, 23(2), 83-102. Available in: https://doi.org/10.1016/0191-2615(89)90034-9

2 Ma, J., Fukuda, D., Schmöcker, J. D. (2012) “Faster hyperpath generating algorithms for vehicle navigation”, Transportmetrica A: Transport
Science, 9(10), 925–948. Available in: https://doi.org/10.1080/18128602.2012.719165

2.6. Transit assignment 143

https://doi.org/10.1016/0191-2615(89)90034-9
https://doi.org/10.1080/18128602.2012.719165

AequilibraE Documentation

(continued from previous page)

RS = 124 # random seed
FS = (6, 6) # figure size

Bell’s network

We start by defining the directed graph 𝒢 = (𝑉,𝐸), where 𝑉 and 𝐸 are the graph vertices and edges. The hyperpath
generating algorithm requires 2 attributes for each edge 𝑎 ∈ 𝑉 :

• edge travel time 𝑢𝑎 ≥ 0

• edge frequency 𝑓𝑎 ≥ 0

The edge frequency is inversely related to the exposure to delay. For example, in a transit network, a boarding edge has
a frequency that is the inverse of the headway (or half the headway, depending on the model assumptions). A walking
edge has no exposure to delay, so its frequency is assumed to be infinite.

Bell’s network is a synthetic network: it is a 𝑛-by-𝑛 grid bi-directional networkPage 143, 2,3. The edge travel time is taken
as random number following a uniform distribution:

𝑢𝑎 ∼ U[0, 1)

To demonstrate how the hyperpath depends on the exposure to delay, we will use a positive constant 𝛼 and a base delay
𝑑𝑎 for each edge that follows a uniform distribution:

𝑑𝑎 ∼ U[0, 1)

The constant 𝛼 ≥ 0 allows us to adjust the edge frequency as follows:

𝑓𝑎 =

{︂
1/ (𝛼 𝑑𝑎) if 𝛼 𝑑𝑎 ̸= 0
∞ otherwise

A smaller 𝛼 value implies higher edge frequencies, and vice versa. Next, we will create the network as a pandas
dataframe.

Vertices

def create_vertices(n):
x = np.linspace(0, 1, n)
y = np.linspace(0, 1, n)
xv, yv = np.meshgrid(x, y, indexing="xy")
vertices = pd.DataFrame()
vertices["x"] = xv.ravel()
vertices["y"] = yv.ravel()
return vertices

n = 10
vertices = create_vertices(n)
vertices.head(3)

3 Bell, M. G. H. (2009) “Hyperstar: A multi-path Astar algorithm for risk averse vehicle navigation”, Transportation Research Part B: Method-
ological, 43(1), 97-107. Available in: https://doi.org/10.1016/j.trb.2008.05.010.

144 Chapter 2. Modeling with AequilibraE

https://doi.org/10.1016/j.trb.2008.05.010

AequilibraE Documentation

x y
0 0.000000 0.0
1 0.111111 0.0
2 0.222222 0.0

@jit
def create_edges_numba(n):

m = 2 * n * (n - 1)
tail = np.zeros(m, dtype=np.uint32)
head = np.zeros(m, dtype=np.uint32)
k = 0
for i in range(n - 1):

for j in range(n):
tail[k] = i + j * n
head[k] = i + 1 + j * n
k += 1
tail[k] = j + i * n
head[k] = j + (i + 1) * n
k += 1

return tail, head

def create_edges(n, seed=124):
tail, head = create_edges_numba(n)
edges = pd.DataFrame()
edges["tail"] = tail
edges["head"] = head
m = len(edges)
rng = np.random.default_rng(seed=seed)
edges["trav_time"] = rng.uniform(0.0, 1.0, m)
edges["delay_base"] = rng.uniform(0.0, 1.0, m)
return edges

edges = create_edges(n, seed=RS)
edges.head(3)

tail head trav_time delay_base
0 0 1 0.785253 0.287917
1 0 10 0.785859 0.970429
2 10 11 0.969136 0.854512

2.6. Transit assignment 145

AequilibraE Documentation

Plot the network

We use the NetworkX package to plot the network. The bottom left vertex is the origin (‘o’) and the top right vertex is
the destination (‘d’) for the hyperpath computation.

NetworkX
n_vertices = n * n
pos = vertices[["x", "y"]].values
G = nx.from_pandas_edgelist(

edges,
source="tail",
target="head",
edge_attr=["trav_time", "delay_base"],
create_using=nx.DiGraph,

)
widths = 2
figure = plt.figure(figsize=FS)
node_colors = n_vertices * ["gray"]
node_colors[0] = "r"
node_colors[-1] = "r"
ns = 100 / n
node_size = n_vertices * [ns]
node_size[0] = 20 * ns
node_size[-1] = 20 * ns
labeldict = {}
labeldict[0] = "o"
labeldict[n * n - 1] = "d"
nx.draw(

G,
pos=pos,
width=widths,
node_size=node_size,
node_color=node_colors,
arrowstyle="->",
labels=labeldict,
with_labels=True,

)
ax = plt.gca()
_ = ax.set_title(f"Bell's network with n={n}", color="k")

146 Chapter 2. Modeling with AequilibraE

https://networkx.org/

AequilibraE Documentation

We can also visualize the edge travel time:

widths = 1e2 * np.array([G[u][v]["trav_time"] for u, v in G.edges()]) / n
_ = plt.figure(figsize=FS)
node_colors = n_vertices * ["gray"]
node_colors[0] = "r"
node_colors[-1] = "r"
ns = 100 / n
node_size = n_vertices * [ns]
node_size[0] = 20 * ns
node_size[-1] = 20 * ns
labeldict = {}
labeldict[0] = "o"

(continues on next page)

2.6. Transit assignment 147

AequilibraE Documentation

(continued from previous page)

labeldict[n * n - 1] = "d"
nx.draw(

G,
pos=pos,
width=widths,
node_size=node_size,
node_color=node_colors,
arrowstyle="-",
labels=labeldict,
with_labels=True,

)
ax = plt.gca()
_ = ax.set_title(

"Bell's network - edge travel time : $\\textit{trav_time}$", color="k"
)

148 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

And the base delay:

widths = 1e2 * np.array([G[u][v]["delay_base"] for u, v in G.edges()]) / n
_ = plt.figure(figsize=FS)
node_colors = n_vertices * ["gray"]
node_colors[0] = "r"
node_colors[-1] = "r"
ns = 100 / n
node_size = n_vertices * [ns]
node_size[0] = 20 * ns
node_size[-1] = 20 * ns
labeldict = {}
labeldict[0] = "o"

(continues on next page)

2.6. Transit assignment 149

AequilibraE Documentation

(continued from previous page)

labeldict[n * n - 1] = "d"
nx.draw(

G,
pos=pos,
width=widths,
node_size=node_size,
node_color=node_colors,
arrowstyle="-",
labels=labeldict,
with_labels=True,

)
ax = plt.gca()
_ = ax.set_title("Bell's network - edge base delay : $\\textit{delay_base}$", color="k")

150 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

Hyperpath computation

We now introduce a function plot_shortest_hyperpath that:

• creates the network,

• computes the edge frequency given an input value for 𝛼,

• compute the shortest hyperpath,

• plot the network and hyperpath with NetworkX.

def plot_shortest_hyperpath(n=10, alpha=10.0, figsize=FS, seed=RS):

(continues on next page)

2.6. Transit assignment 151

AequilibraE Documentation

(continued from previous page)

network creation
vertices = create_vertices(n)
n_vertices = n * n
edges = create_edges(n, seed=seed)
delay_base = edges.delay_base.values
indices = np.where(delay_base == 0.0)
delay_base[indices] = 1.0
freq_base = 1.0 / delay_base
freq_base[indices] = np.inf
edges["freq_base"] = freq_base
if alpha == 0.0:

edges["freq"] = np.inf
else:

edges["freq"] = edges.freq_base / alpha

Spiess & Florian
sf = HyperpathGenerating(

edges, tail="tail", head="head", trav_time="trav_time", freq="freq"
)
sf.run(origin=0, destination=n * n - 1, volume=1.0)

NetworkX
pos = vertices[["x", "y"]].values
G = nx.from_pandas_edgelist(

sf._edges,
source="tail",
target="head",
edge_attr="volume",
create_using=nx.DiGraph,

)
widths = 1e2 * np.array([G[u][v]["volume"] for u, v in G.edges()]) / n
figure = plt.figure(figsize=figsize)
node_colors = n_vertices * ["gray"]
node_colors[0] = "r"
node_colors[-1] = "r"
ns = 100 / n
node_size = n_vertices * [ns]
node_size[0] = 20 * ns
node_size[-1] = 20 * ns
labeldict = {}
labeldict[0] = "o"
labeldict[n * n - 1] = "d"
nx.draw(

G,
pos=pos,
width=widths,
node_size=node_size,
node_color=node_colors,
arrowstyle="-",
labels=labeldict,
with_labels=True,

)

(continues on next page)

152 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

(continued from previous page)

ax = plt.gca()
_ = ax.set_title(

f"Shortest hyperpath - Bell's network $\\alpha$={alpha}", color="k"
)

We start with 𝛼 = 0. This implies that there is no delay over all the network.

plot_shortest_hyperpath(n=10, alpha=0.0)

The hyperpath that we obtain is the same as the shortest path that Dijkstra’s algorithm would have computed. We call
NetworkX’s dijkstra_path method in order to compute the shortest path:

2.6. Transit assignment 153

AequilibraE Documentation

G = nx.from_pandas_edgelist(
sf._edges,
source="tail",
target="head",
edge_attr="trav_time",
create_using=nx.DiGraph,

)

Dijkstra
nodes = nx.dijkstra_path(G, 0, n*n-1, weight='trav_time')
edges = list(nx.utils.pairwise(nodes))

plot
figure = plt.figure(figsize=FS)
node_colors = n_vertices * ["gray"]
node_colors[0] = "r"
node_colors[-1] = "r"
ns = 100 / n
node_size = n_vertices * [ns]
node_size[0] = 20 * ns
node_size[-1] = 20 * ns
labeldict = {}
labeldict[0] = "o"
labeldict[n * n - 1] = "d"
widths = 1e2 * np.array([1 if (u,v) in edges else 0 for u, v in G.edges()]) / n
pos = vertices[["x", "y"]].values
nx.draw(

G,
pos=pos,
width=widths,
node_size=node_size,
node_color=node_colors,
arrowstyle="-",
labels=labeldict,
with_labels=True,

)
ax = plt.gca()
_ = ax.set_title(

f"Shortest path - Bell's network", color="k"
)

154 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

Let’s introduce some delay by increasing the value of 𝛼:

plot_shortest_hyperpath(n=10, alpha=0.5)

2.6. Transit assignment 155

AequilibraE Documentation

The shortest path is no longer unique and multiple routes are suggested. The link usage probability is reflected by
the line width. The majority of the flow still follows the shortest path, but some of it is distributed among different
alternative paths. This becomes more apparent as we further increase 𝛼:

plot_shortest_hyperpath(n=10, alpha=1.0)

156 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

plot_shortest_hyperpath(n=10, alpha=100.0)

2.6. Transit assignment 157

AequilibraE Documentation

References

2.6.2 The Transit assignment graph

This page is a description of a graph structure for a transit network, used for static, link-based, frequency-based as-
signment. Our focus is the classic algorithm “Optimal strategies” by Spiess & Florian1.

Let’s start by giving a few definitions:

• transit definition from Wikipedia:
1 Spiess, H., Florian, M. (1989) “Optimal strategies: A new assignment model for transit networks”. Transportation Research Part B: Method-

ological, 23(2), 83-102. Available in: https://doi.org/10.1016/0191-2615(89)90034-9

158 Chapter 2. Modeling with AequilibraE

https://en.wikipedia.org/wiki/Public_transport
https://doi.org/10.1016/0191-2615(89)90034-9

AequilibraE Documentation

system of transport for passengers by group travel systems available for use by the general public unlike
private transport, typically managed on a schedule, operated on established routes, and that charge a posted
fee for each trip.

• transit network: a set of transit lines and stops, where passengers can board, alight or change vehicles.

• assignment: distribution of the passengers (demand) on the network (supply), knowing that transit users attempt
to minimize total travel time, time or distance walking, time waiting, number of transfers, fares, etc. . .

• static assignment : assignment without time evolution. Dynamic properties of the flows, such as congestion, are
not well described, unlike with dynamic assignment models.

• frequency-based (or headway-based) as opposed to schedule-based : schedules are averaged in order to get line
frequencies. In the schedule-based approach, distinct vehicle trips are represented by distinct links. We can see
the associated network as a time-expanded network, where the third dimension would be time.

• link-based: the assignment algorithm is not evaluating paths, or any aggregated information besides attributes
stored by nodes and links. In the present case, each link has an associated cost (travel time) c [s] and frequency
f [1/s].

We are going at first to describe the input transit network, which is mostly composed of stops, lines and zones.

Elements of a transit network

Transit stops and stations

Transit stops are points where passenger can board, alight or change vehicles. Also, they can be part of larger stations:

In the illustration above, two distinct stops, A and B, are highlighted, both affiliated with the same station (depicted in
red).

2.6. Transit assignment 159

AequilibraE Documentation

Transit lines

A transit line is a set of services that may use different routes, decomposed into segments.

Transit routes

A routes is described by a sequence of stop nodes. We assume here the routes to be directed. For example, we can take
a simple case with 3 stops:

In this case, the L1 line is made of two distinct routes: - ABC - CBA.

Various configurations are possible, such as:

• a partial route at a given moment of the day: AB,

• a route with an additional stop : ABDC

• a route that does not stop at a given stop: AC

Lines can be decomposed into multiple sub-lines, each representing distinct routes. For the given example, we may
have several sub-lines under the same commercial line (L1):

line id commercial name stop sequence headway (s)
L1_a1 L1 ABC 600
L1_a2 L1 ABDC 3600
L1_a3 L1 AB 3600
L1_a4 L1 AC 3600
L1_b1 L1 CBA 600

Headway, associated with each sub-line, corresponds to the mean time range between consecutive vehicles—the inverse
of the line frequency used as a link attribute in the assignment algorithm.

160 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

Line segments

A line segment represents a portion of a transit line between two consecutive stops. Using the example line L1_a1, we
derive two distinct line segments:

line id segment index origin stop destination stop travel_time (s)
L1_a1 1 A B 300
L1_a1 2 B C 600

Note that a travel time is included for each line segment, serving as another link attribute used by the assignment
algorithm.

Note that a travel time is included for each line segment, serving as another link attribute used by the assignment
algorithm.

Transit assignment zones and connectors

To effectively assign passengers on the network, expressing demand between regions is crucial. This is achieved by first
decomposing the network area into a partition of transit assignment zones, as illustrated below with 4 non-overlapping
zones:

The demand is then expressed as a number of trips from each zone to every other zone, forming a 4 by 4 Ori-
gin/Destination (OD) matrix in this case.

Additionally, each zone centroid is connected to specific network nodes to facilitate the connection between supply and
demand. These connection points are referred to as connectors.

2.6. Transit assignment 161

AequilibraE Documentation

With these components, we now have all the elements required to describe the assignment graph.

The Assignment graph

Link and node types

The transit network is used to generate a graph with specific nodes and links used to model the transit process. Various
link types and node categories play crucial roles in this representation.

Link types:

• on-board

• boarding

• alighting

• dwell

• transfer

• connector

• walking

Nodes types:

162 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

• stop

• boarding

• alighting

• od

• walking

To illustrate, consider the anatomy of a simple stop:

Waiting links encompass boarding and transfer links. Each line segment is associated with a boarding, an on-board
and an alighting link.

Transfer links enable to compute the passenger flow count between line couples at the same stop:

These links can be extended between all lines of a station if an increase in the number of links is viable.

2.6. Transit assignment 163

AequilibraE Documentation

walking links connect stop nodes within a station, while connector links connect the zone centroids (od nodes) to stop
nodes:

Connectors that connect od to stop nodes allow passengers to access the network, while connectors in the opposite
direction allow them to egress. Walking nodes/links may also be used to connect stops from distant stations.

Link attributes

The table below summarizes link characteristics and attributes based on link types:

link type from node type to node type cost frequency
on-board boarding alighting trav. time ∞
boarding stop boarding const. line freq.
alighting alighting stop const. ∞
dwell alighting boarding const. ∞
transfer alighting boarding const. + trav. time dest. line freq.
connector od or stop od or stop trav. time ∞
walking stop or walking stop or walking trav. time ∞

The travel time is specific to each line segment or walking time. For example, there can be 10 minutes connection
between stops in a large transit station. Constant boarding and alighting times are applied uniformly across the network,
and dwell links have constant cost equal to the sum of the alighting and boarding constants.

Additional attributes can be introduced for specific link types, such as:

• line_id: for on-board, boarding, alighting and dwell links.

• line_seg_idx: the line segment index for boarding, on-board and alighting links.

• stop_id: for alighting, dwell and boarding links. This can also apply to transfer links for inner stop transfers.

• o_line_id: origin line id for transfer links

• d_line_id: destination line id for transfer links

In the next section, we will explore a small classic transit network example featuring four stops and four lines.

164 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

A Small example : Spiess and Florian

This illustrative example is taken from Spiess and FlorianPage 158, 1:

Travel time are indicated on the figure. We have the following four distinct line characteristics:

line id route headway (min) frequency (1/s)
L1 AB 12 0.001388889
L2 AXY 12 0.001388889
L3 XYB 30 0.000555556
L4 YB 6 0.002777778

Passengers aim to travel from A to B, prompting the division of the network area into two distinct zones: TAZ 1 and
TAZ 2. The assignment graph associated with this network encompasses 26 links:

2.6. Transit assignment 165

AequilibraE Documentation

Here is a table listing all links :

link id link type line id cost frequency
1 connector 0 ∞
2 boarding L1 0 0.001388889
3 boarding L2 0 0.001388889
4 on-board L1 1500 ∞
5 on-board L2 420 ∞
6 alighting L2 0 ∞
7 dwell L2 0 ∞
8 transfer 0 0.000555556
9 boarding L2 0 0.001388889
10 boarding L3 0 0.000555556
11 on-board L2 360 ∞
12 on-board L3 240 ∞
13 alighting L3 0 ∞
14 alighting L2 0 ∞
15 transfer L3 0 0.000555556
16 transfer 0 0.002777778
17 dwell L3 0 ∞
18 transfer 0 0.002777778
19 boarding L3 0 0.000555556
20 boarding L4 0 0.002777778
21 on-board L3 240 ∞
22 on-board L4 600 ∞
23 alighting L4 0 ∞
24 alighting L3 0 ∞
25 alighting L1 0 ∞
26 connector 0 ∞

166 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

Transit graph specificities in AequilibraE

The graph creation process in AequilibraE incorporates several edge types to capture the nuances of transit networks.
Notable distinctions include:

Connectors :

• access connectors directed from od nodes to the network

• egress connectors directed from the network to the od nodes

Transfer edges :

• inner transfer: Connect lines within the same stop

• outer transfer: Connect lines between distinct stops within the same station

Origin and Destination Nodes :

• origin nodes: represent the starting point of passenger trips

• destination nodes: represent the end point of passenger trips

Users can customize these features using boolean parameters:

• with_walking_edges: create walking edges between the stops of a station

• with_inner_stop_transfers: create transfer edges between lines of a stop

• with_outer_stop_transfers: create transfer edges between lines of different stops of a station

• blocking_centroid_flow: duplicate OD nodes into unconnected origin and destination nodes in order to block
centroid flows. Flows starts from an origin node and ends at a destination node. It is not possible to use an egress
connector followed by an access connector in the middle of a trip.

Note that during the assignment, if passengers have the choice between a transfer edge or a walking edge for a line
change, they will always be assigned to the transfer edge.

This leads to these possible edge types:

• on-board

• boarding

• alighting

• dwell

• access_connector

• egress_connector

• inner_transfer

• outer_transfer

• walking

Here is a simple example of a station with two stops, with two lines each:

• walking edges only:

2.6. Transit assignment 167

AequilibraE Documentation

• inner transfer edges, but no outer transfer ones:

• both inner and outer transfer edges:

168 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

As an illustrative example, if we build the graph for the city of Lyon France (GTFS files from 2022) on a given day,
we get 20196 vertices and 91107 edges, with with_walking_edges=True, with_inner_stop_transfers=True,
with_outer_stop_transfers=True and blocking_centroid_flow=False. Here is the distribution of edge
types:

Edge type Count
outer_transfer 27287
inner_transfer 10721
walking 9140
on-board 7590
boarding 7590
alighting 7590
dwell 7231
access_connector 6979
egress_connector 6979

and vertex types:

Vertex type Count
alighting 7590
boarding 7590
stop 4499
od 517

2.6. Transit assignment 169

AequilibraE Documentation

References

2.7 Route Choice

As argued in the literature3, the route choice problem does not have a closed solution, and the selection of one of the
many modelling frameworks4 depends on many factors. A common modelling framework in practice is consists of two
steps: Choice set generation and the choice selection process.

AequilibraE is the first modeling package with full support for route choice, from the creation of choice sets through
multiple algorithms to the assignment of trips to the network using the traditional Path-Size logit.

2.7.1 Costs, utilities and signs

AequilibraE’s path computation procedures require all link costs to be positive. For that reason, link utilities (or disu-
tilities) must be positive, while its obvious minus sign is handled internally. This mechanism prevents the possibility
of links with actual positive utility, but those cases are arguably not reasonable to exist in practice.

2.7.2 Choice set generation algorithms available

All algorithms have been implemented as a single software class

Algorithm Brief description
Link-Penalisation Classical link penalisation.
Breadth-First Search with Link Removal As described in4.
Breadth-First Search with Link Removal + Link-
Penalisation

A combination of BFS-LE and LP See RouteChoice docu-
mentation

Imports

from aequilibrae.paths.route_choice_set import RouteChoiceSet
from aequilibrae import Project

proj = Project()
proj.load('path/to/project/folder')

proj.network.build_graphs()
graph = proj.network.graphs['c']

Measure that will be used to compute paths
theta = 0.0014
graph.network = graph.network.assign(utility=graph.network.distance * theta)
graph.set_graph('utility')

graph.prepare_graph(centroids=[list_of_all_nodes_network_centroids])

(continues on next page)

3 Zill, J. C., and P. V. de Camargo. State-Wide Route Choice Models (Submitted). Presented at the ATRF, Melbourne, Australia, 2024.
4 Rieser-Schüssler, N., Balmer, M., & Axhausen, K. W. (2012). Route choice sets for very high-resolution data. Transportmetrica A: Transport

Science, 9(9), 825–845. https://doi.org/10.1080/18128602.2012.671383

170 Chapter 2. Modeling with AequilibraE

https://doi.org/10.1080/18128602.2012.671383

AequilibraE Documentation

(continued from previous page)

rc = RouteChoice(graph, mat)
rc.set_choice_set_generation("bfsle", max_routes=5)
rc.execute(perform_assignment=True)

Full process overview

The estimation of route choice models based on vehicle GPS data can be explored on a family of papers scheduled to
be presented at the ATRF 20241,2,Page 170, 3.

Choice set generation algorithms

The generation of choice sets for route choice algorithms is the most time-consuming step of most well-established
route choice algorithms, and that’s certainly the case in AequilibraE’s implementation of the Path Size Logit.

Consistent with AequilibraE’s software architecture, the route choice set generation is implemented as a separate
Cython module that integrates into existing AequilibraE infrastructure; this allows it to benefit from established opti-
misations such as graph compression and high-performance data structures.

A key point of difference in AequilibraE’s implementation comes from its flexibility in allowing us to reconstruct a
compressed graph for computation between any two points in the network. This is a significant advantage when prepar-
ing datasets for model estimation, as it is possible to generate choice sets between exact network positions collected
from observed data (e.g. vehicle GPS data, Location-Based services, etc.), which is especially relevant in the context
of micro-mobility and active modes.

Choice set construction algorithms

There are two different route choice set generation algorithms available in AequilibraE: Link Penalisation (LP), and
Breadth-First Search with Link-Elimination (BFS-LE). The underlying implementation relies on the use of several spe-
cialized data structures to minimise the overhead of route set generation and storage, as both methods were implemented
in Cython for easy access to existing AequilibraE methods and standard C++ data structures.

The process is designed to run multiple calculations simultaneously across the origin-destination pairs, utilising multi-
core processors and improving computational performance. As Rieser-Schüssler et al.1 noted, pathfinding is the most
time-consuming stage in generating a set of route choices. Despite the optimisations implemented to reduce the com-
putational load of maintaining the route set generation overhead, computational time is still not trivial, as pathfinding
remains the dominant factor in determining runtime.

1 Camargo, P. V. de, and R. Imai. Map-Matching Large Streams of Vehicle GPS Data into Bespoke Networks (Submitted). Presented at the
ATRF, Melbourne, 2024.

2 Moss, J., P. V. de Camargo, C. de Freitas, and R. Imai. High-Performance Route Choice Set Generation on Large Networks (Submitted).
Presented at the ATRF, Melbourne, 2024.

1 Rieser-Schüssler, N., Balmer, M., & Axhausen, K. W. (2012). Route choice sets for very high-resolution data. Transportmetrica A: Transport
Science, 9(9), 825–845. https://doi.org/10.1080/18128602.2012.671383

2.7. Route Choice 171

https://doi.org/10.1080/18128602.2012.671383

AequilibraE Documentation

Link-Penalization

The link Penalization (LP) method is one of the most traditional approaches for generating route choice sets. It consists
of an iterative approach where, in each iteration, the shortest path between the origin and the destination in question
is computed. After each iteration, however, a pre-defined penalty factor is applied to all links that are part of the path
found, essentially modifying the graph to make the previously found path less attractive.

The LP method is a simple and effective way to generate route choice sets, but it is sensitive to the penalty factor,
which can significantly affect the quality of the generated choice sets, requiring experimentation during the model
development/estimation stage.

The overhead of the LP method is negligible due to AequilibraE’s internal data structures that allow for easy data
manipulation of the graph in memory.

BFS-LE

At a high level, BFS-LE operates on a graph of graphs, exploring unique graphs linked by a single removed edge. Each
graph can be uniquely categorised by a set of removed links from a common base graph, allowing us to avoid explicitly
maintaining the graph of graphs. Instead, generating and storing that graph’s set of removed links in the breadth-first
search (BFS) order.

To efficiently store and determine the uniqueness of a new route or removed link sets, we used modified hash functions
with properties that allowed us to store and nest them within standard C++ data structures. We used a commutative
hash function for the removed link sets to allow for amortised O(1) order-independent uniqueness testing. While the
removed link sets are always constructed incrementally, we did not opt for an incremental hash function as we did not
deem this a worthwhile optimisation. The removed link sets rarely grew larger than double digits, even on a network
with over 600,000 directed links. This may be an area worth exploring for networks with a significantly larger number
of desired routes than links between ODs.

For uniqueness testing of discovered routes, AequilibraE implements a traditional, non-commutative hash function.
Since cryptographic security was not a requirement for our purposes, we use a fast general-purpose integer hash func-
tion. Further research could explore the use of specialised integer vector hash functions. As we did not find the hashing
had a non-negligible influence on the runtime performance, this optimisation was not tested.

AequilibraE also implements a combination of LP and BFS-LP as an optional feature to the latter algorithm, as recom-
mended by Rieser-Schüssler et al.Page 171, 1, which is also a reference for further details on the BFS-LE algorithm.

172 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

Experiment

In an experiment with nearly 9,000 observed vehicle GPS routes covering a large Australian State, we found that all three
algorithms (LP, BFS-LE, and BFS-LE+LP) had excellent performance in reproducing the observed routes. However,
the computational overhead of BFS-LE is substantial enough to recommend always verifying if LP is fit-for-purpose.

Code example

from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example
from aequilibrae.paths.route_choice_set import RouteChoiceSet

fldr = join(gettempdir(), uuid4().hex)
project = create_example(fldr, "coquimbo")

project.network.build_graphs()
graph = project.network.graphs["c"]
graph.set_graph("free_flow_time")

graph.prepare_graph(np.array([1, 2, 3, 50, 100, 150]))

nodes = [(1, 50), (2, 100), (3, 150)] # List of tuples with (origin, destination) nodes
max_routes = 10 # Maximum number of routes to be computed for each OD pair
penalty = 1.01 # Penalty to be applied to links used in paths.
cores = 60 # Number of threads to be used in the computation

(continues on next page)

2.7. Route Choice 173

AequilibraE Documentation

(continued from previous page)

psl = True # If True, the path size logit will be used to compute probabilities already
This is only useful if you are already using an utility measure to compute paths
bfsle = True # Should we use BFSLE? If False, defaults to Link Penalization

rc = RouteChoiceSet(graph) # Builds data structures -> can take a minute
rc.batched(nodes, max_routes=max_routes, cores=cores, bfsle=bfsle, penalty=penalty, path_
→˓size_logit=psl)

results = rc.get_results().to_pandas()
results.to_parquet(Path("/my_choice_set.parquet"))

References

Route choice models

Path-Size logit is based on the multinomial logit (MNL) model, which is one of the most used models in the trans-
portation field in general1. It can be derived from random utility-maximizing principles with certain assumptions on
the distribution of the random part of the utility. To account for the correlation of alternatives, Ramming2 introduced
a correction factor that measures the overlap of each route with all other routes in a choice set based on shared link
attributes, which gives rise to the PSL model. The PSL is currently the most used route choice model in practice, hence
its choice as the first algorithm to be implemented in AequilibraE

Path-Size Logit (PSL)

The PSL model’s utility function is defined by

𝑈𝑖 = 𝑉𝑖 + 𝛽𝑃𝑆𝐿 × log 𝛾𝑖 + 𝜀𝑖

with path overlap correction factor

𝛾𝑖 =
∑︁
𝑎∈𝐴𝑖

𝑙𝑎
𝐿𝑖

× 1∑︀
𝑘∈𝑅 𝛿𝑎,𝑘

Here, 𝑈𝑖 is the total utility of alternative 𝑖, 𝑉𝑖 is the observed utility, 𝜀𝑖 is an identical and independently distributed
random variable with a Gumbel distribution, 𝛿𝑎,𝑘 is the Kronecker delta, 𝑙𝑎 is cost of link 𝑎, 𝐿𝑖 is total cost of route 𝑖,
𝐴𝑖 is the link set and 𝑅 is the route choice set for individual 𝑗 (index 𝑗 suppressed for readability). The path overlap
correction factor 𝛾 can be theoretically derived by aggregation of alternatives under certain assumptions, see3 and
references therein.

Note

AequilibraE uses cost to compute path overlaps rather than distance

1 Ben-Akiva, M., and S. Lerman. Discrete Choice Analysis. The MIT Press, 1985.
2 Ramming, M. S. Network Knowledge and Route Choice. Massachusetts Institute of Technology, 2002.
3 Frejinger, E. (2008) Route Choice Analysis : Data , Models , Algorithms and Applications.

174 Chapter 2. Modeling with AequilibraE

AequilibraE Documentation

Binary logit filter

A binary logit filter is available to remove unfavourable routes from the route set before applying the path-sized logit
assignment. This filters accepts a numerical parameter for the minimum demand share acceptable for any path, which
is approximated by the binary logit considering the shortest path and each subsequent path.

References

2.7. Route Choice 175

AequilibraE Documentation

176 Chapter 2. Modeling with AequilibraE

CHAPTER

THREE

API REFERENCE

aequilibrae.setup()

aequilibrae.cleaning()

3.1 Project

Project AequilibraE project class

3.1.1 aequilibrae.project.Project

class aequilibrae.project.Project

AequilibraE project class

Listing 1: Create Project

>>> newfile = Project()
>>> newfile.new('/tmp/new_project')

Listing 2: Open Project

>>> from aequilibrae.project import Project

>>> existing = Project()
>>> existing.open('/tmp/test_project')

>>> #Let's check some of the project's properties
>>> existing.network.list_modes()
['M', 'T', 'b', 'c', 't', 'w']
>>> existing.network.count_links()
76
>>> existing.network.count_nodes()
24

__init__()

177

AequilibraE Documentation

Methods

__init__()

activate()

check_file_indices() Makes results_database.sqlite and the matrices folder
compatible with project database

close() Safely closes the project
connect()

deactivate()

from_path (project_folder)

load(project_path) Loads project from disk
log() Returns a log object
new(project_path) Creates a new project
open(project_path) Loads project from disk

Attributes

parameters

project_parameters

zoning

classmethod from_path(project_folder)

open(project_path: str)→ None
Loads project from disk

Arguments
project_path (str): Full path to the project data folder. If the project inside does not exist,
it will fail.

new(project_path: str)→ None
Creates a new project

Arguments
project_path (str): Full path to the project data folder. If folder exists, it will fail

close()→ None
Safely closes the project

load(project_path: str)→ None
Loads project from disk

Deprecated since version 0.7.0: Use open() instead.

178 Chapter 3. API Reference

AequilibraE Documentation

Arguments
project_path (str): Full path to the project data folder. If the project inside does not exist,
it will fail.

connect()

activate()

deactivate()

log()→ Log
Returns a log object

allows the user to read the log or clear it

property project_parameters: Parameters

property parameters: dict

check_file_indices()→ None
Makes results_database.sqlite and the matrices folder compatible with project database

property zoning

3.1.2 Project Components

About Provides an interface for querying and editing the about
table of an AequilibraE project

FieldEditor Allows user to edit the project data tables
Log API entry point to the log file contents
Matrices Gateway into the matrices available/recorded in the

model
Network Network class.
Zoning Access to the API resources to manipulate the zones ta-

ble in the project

aequilibrae.project.About

class aequilibrae.project.About(project)
Provides an interface for querying and editing the about table of an AequilibraE project

>>> from aequilibrae import Project

>>> project = Project.from_path("/tmp/test_project")

Adding a new field and saving it
>>> project.about.add_info_field('my_super_relevant_field')
>>> project.about.my_super_relevant_field = 'super relevant information'
>>> project.about.write_back()

changing the value for an existing value/field
>>> project.about.scenario_name = 'Just a better scenario name'
>>> project.about.write_back()

3.1. Project 179

AequilibraE Documentation

__init__(project)

Methods

__init__(project)

add_info_field(info_field) Adds new information field to the model
create() Creates the 'about' table for project files that did not

previously contain it
list_fields() Returns a list of all characteristics the about table

holds
write_back() Saves the information parameters back to the project

database

create()

Creates the ‘about’ table for project files that did not previously contain it

list_fields()→ list
Returns a list of all characteristics the about table holds

add_info_field(info_field: str)→ None
Adds new information field to the model

Arguments
info_field (str): Name of the desired information field to be added. Has to be a valid Python
VARIABLE name (i.e. letter as first character, no spaces and no special characters)

>>> from aequilibrae import Project

>>> p = Project.from_path("/tmp/test_project")
>>> p.about.add_info_field('a_cool_field')
>>> p.about.a_cool_field = 'super relevant information'
>>> p.about.write_back()

write_back()

Saves the information parameters back to the project database

>>> from aequilibrae import Project

>>> p = Project.from_path("/tmp/test_project")
>>> p.about.description = 'This is the example project. Do not use for forecast'
>>> p.about.write_back()

180 Chapter 3. API Reference

AequilibraE Documentation

aequilibrae.project.FieldEditor

class aequilibrae.project.FieldEditor(project, table_name: str)
Allows user to edit the project data tables

The field editor is used for two different purposes:

• Managing data tables (adding and removing fields)

• Editing the tables’ metadata (description of each field)

This is a general class used to manage all project’s data tables accessible to the user and but it should be accessed
directly from within the module corresponding to the data table one wants to edit. Example:

>>> from aequilibrae import Project

>>> proj = Project.from_path("/tmp/test_project")

To edit the fields of the link_types table
>>> lt_fields = proj.network.link_types.fields

To edit the fields of the modes table
>>> m_fields = proj.network.modes.fields

Field descriptions are kept in the table attributes_documentation

__init__(project, table_name: str)→ None

Methods

__init__(project, table_name)

add(field_name, description[, data_type]) Adds new field to the data table
all_fields() Returns the list of fields available in the database
remove(field_name)

save() Saves any field descriptions which my have been
changed to the database

add(field_name: str, description: str, data_type='NUMERIC')→ None
Adds new field to the data table

Arguments
field_name (str): Field to be added to the table. Must be a valid SQLite field name

description (str): Description of the field to be inserted in the metadata

data_type (str, Optional): Valid SQLite Data type. Default: “NUMERIC”

remove(field_name: str)→ None

save()→ None
Saves any field descriptions which my have been changed to the database

all_fields()→ List[str]
Returns the list of fields available in the database

3.1. Project 181

AequilibraE Documentation

aequilibrae.project.Log

class aequilibrae.project.Log(project_base_path: str)
API entry point to the log file contents

>>> from aequilibrae import Project

>>> project = Project()
>>> project.new(tmp_path_empty)

>>> log = project.log()

We get all entries for the log file
>>> entries = log.contents()

Or clear everything (NO UN-DOs)
>>> log.clear()

__init__(project_base_path: str)

Methods

__init__(project_base_path)

clear() Clears the log file.
contents() Returns contents of log file

contents()→ list
Returns contents of log file

Returns
log_contents (list): List with all entries in the log file

clear()

Clears the log file. Use it wisely

aequilibrae.project.Matrices

class aequilibrae.project.Matrices(project)
Gateway into the matrices available/recorded in the model

__init__(project)

182 Chapter 3. API Reference

AequilibraE Documentation

Methods

__init__(project)

check_exists(name) Checks whether a matrix with a given name exists
clear_database() Removes records from the matrices database that do

not exist in disk
delete_record(matrix_name) Deletes a Matrix Record from the model and attempts

to remove from disk
get_matrix(matrix_name) Returns an AequilibraE matrix available in the project
get_record(matrix_name) Returns a model Matrix Record for manipulation in

memory
list() List of all matrices available
new_record(name, file_name[, matrix]) Creates a new record for a matrix in disk, but does not

save it
reload() Discards all memory matrices in memory and loads

recreate them
update_database() Adds records to the matrices database for matrix files

found on disk

reload()

Discards all memory matrices in memory and loads recreate them

clear_database()→ None
Removes records from the matrices database that do not exist in disk

update_database()→ None
Adds records to the matrices database for matrix files found on disk

list()→ DataFrame
List of all matrices available

Returns
df (pd.DataFrame): Pandas DataFrame listing all matrices available in the model

get_matrix(matrix_name: str)→ AequilibraeMatrix
Returns an AequilibraE matrix available in the project

Raises an error if matrix does not exist

Arguments
matrix_name (str): Name of the matrix to be loaded

Returns
matrix (AequilibraeMatrix): Matrix object

get_record(matrix_name: str)→ MatrixRecord
Returns a model Matrix Record for manipulation in memory

check_exists(name: str)→ bool
Checks whether a matrix with a given name exists

Returns
exists (bool): Does the matrix exist?

3.1. Project 183

AequilibraE Documentation

delete_record(matrix_name: str)→ None
Deletes a Matrix Record from the model and attempts to remove from disk

new_record(name: str, file_name: str, matrix=None)→ MatrixRecord
Creates a new record for a matrix in disk, but does not save it

If the matrix file is not already on disk, it will fail

Arguments
name (str): Name of the matrix

file_name (str): Name of the file on disk

Returns
matrix_record (MatrixRecord): A matrix record that can be manipulated in memory before
saving

aequilibrae.project.Network

class aequilibrae.project.Network(project)
Network class. Member of an AequilibraE Project

__init__(project)→ None

Methods

__init__(project)

build_graphs([fields, modes]) Builds graphs for all modes currently available in the
model

convex_hull() Queries the model for the convex hull of the entire
network

count_centroids() Returns the number of centroids in the model
count_links() Returns the number of links in the model
count_nodes() Returns the number of nodes in the model
create_from_gmns(link_file_path, node_file_path) Creates AequilibraE model from links and nodes in

GMNS format.
create_from_osm([model_area, place_name, ...]) Downloads the network from Open-Street Maps
export_to_gmns(path) Exports AequilibraE network to csv files in GMNS

format.
extent() Queries the extent of the network included in the

model
list_modes() Returns a list of all the modes in this model
set_time_field(time_field) Set the time field for all graphs built in the model
skimmable_fields() Returns a list of all fields that can be skimmed

184 Chapter 3. API Reference

AequilibraE Documentation

Attributes

link_types

netsignal

protected_fields

req_link_flds

req_node_flds

netsignal = <aequilibrae.utils.python_signal.PythonSignal object>

req_link_flds = ['link_id', 'a_node', 'b_node', 'direction', 'distance', 'modes',
'link_type']

req_node_flds = ['node_id', 'is_centroid']

protected_fields = ['ogc_fid', 'geometry']

link_types: LinkTypes = None

skimmable_fields()

Returns a list of all fields that can be skimmed

Returns
list: List of all fields that can be skimmed

list_modes()

Returns a list of all the modes in this model

Returns
list: List of all modes

create_from_osm(model_area: Polygon | None = None, place_name: str | None = None, modes=('car',
'transit', 'bicycle', 'walk'), clean=True)→ None

Downloads the network from Open-Street Maps

Arguments
area (Polygon, Optional): Polygon for which the network will be downloaded. If not pro-
vided, a place name would be required

place_name (str, Optional): If not downloading with East-West-North-South boundingbox,
this is required

modes (tuple, Optional): List of all modes to be downloaded. Defaults to the modes in the
parameter file

clean (bool, Optional): Keeps only the links that intersects the model area polygon. Defaults
to True. Does not apply to networks downloaded with a place name

>>> from aequilibrae import Project

>>> p = Project()
(continues on next page)

3.1. Project 185

AequilibraE Documentation

(continued from previous page)

>>> p.new("/tmp/new_project")

We now choose a different overpass endpoint (say a deployment in your local␣
→˓network)
>>> par = Parameters()
>>> par.parameters['osm']['overpass_endpoint'] = "http://192.168.1.234:5678/api"

Because we have our own server, we can set a bigger area for download (in M2)
>>> par.parameters['osm']['max_query_area_size'] = 10000000000

And have no pause between successive queries
>>> par.parameters['osm']['sleeptime'] = 0

Save the parameters to disk
>>> par.write_back()

Now we can import the network for any place we want
p.network.create_from_osm(place_name="my_beautiful_hometown")

>>> p.close()

create_from_gmns(link_file_path: str, node_file_path: str, use_group_path: str | None = None,
geometry_path: str | None = None, srid: int = 4326)→ None

Creates AequilibraE model from links and nodes in GMNS format.

Arguments
link_file_path (str): Path to a links csv file in GMNS format

node_file_path (str): Path to a nodes csv file in GMNS format

use_group_path (str, Optional): Path to a csv table containing groupings of uses. This
helps AequilibraE know when a GMNS use is actually a group of other GMNS uses

geometry_path (str, Optional): Path to a csv file containing geometry information for a line
object, if not specified in the link table

srid (int, Optional): Spatial Reference ID in which the GMNS geometries were created

export_to_gmns(path: str)
Exports AequilibraE network to csv files in GMNS format.

Arguments
path (str): Output folder path.

build_graphs(fields: list | None = None, modes: list | None = None)→ None
Builds graphs for all modes currently available in the model

When called, it overwrites all graphs previously created and stored in the networks’ dictionary of graphs

Arguments
fields (list, Optional): When working with very large graphs with large number of fields in
the database, it may be useful to specify which fields to use

modes (list, Optional): When working with very large graphs with large number of fields
in the database, it may be useful to generate only those we need

To use the fields parameter, a minimalistic option is the following

186 Chapter 3. API Reference

AequilibraE Documentation

>>> from aequilibrae import Project

>>> p = Project.from_path("/tmp/test_project")
>>> fields = ['distance']
>>> p.network.build_graphs(fields, modes = ['c', 'w'])

set_time_field(time_field: str)→ None
Set the time field for all graphs built in the model

Arguments
time_field (str): Network field with travel time information

count_links()→ int
Returns the number of links in the model

Returns
int: Number of links

count_centroids()→ int
Returns the number of centroids in the model

Returns
int: Number of centroids

count_nodes()→ int
Returns the number of nodes in the model

Returns
int: Number of nodes

extent()

Queries the extent of the network included in the model

Returns
model extent (Polygon): Shapely polygon with the bounding box of the model network.

convex_hull()→ Polygon
Queries the model for the convex hull of the entire network

Returns
model coverage (Polygon): Shapely (Multi)polygon of the model network.

aequilibrae.project.Zoning

class aequilibrae.project.Zoning(network)
Access to the API resources to manipulate the zones table in the project

>>> from aequilibrae import Project

>>> project = Project.from_path("/tmp/test_project")

>>> zoning = project.zoning

>>> zone_downtown = zoning.get(1)
>>> zone_downtown.population = 637

(continues on next page)

3.1. Project 187

AequilibraE Documentation

(continued from previous page)

>>> zone_downtown.employment = 10039
>>> zone_downtown.save()

changing the value for an existing value/field
>>> project.about.scenario_name = 'Just a better scenario name'
>>> project.about.write_back()

We can also add one more field to the table
>>> fields = zoning.fields
>>> fields.add('parking_spots', 'Total licensed parking spots', 'INTEGER')

__init__(network)

Methods

__init__(network)

all_zones() Returns a dictionary with all Zone objects available
in the model.

coverage() Returns a single polygon for the entire zoning cover-
age

create_zoning_layer() Creates the 'zones' table for project files that did not
previously contain it

extent() Queries the extent of the layer included in the model
get(zone_id) Get a zone from the model by its zone_id
get_closest_zone(geometry) Returns the zone in which the given geometry is lo-

cated.
new(zone_id) Creates a new zone
refresh_geo_index()

save()

Attributes

data Returns all zones data as a Pandas DataFrame
fields Returns a FieldEditor class instance to edit the zones

table fields and their metadata

new(zone_id: int)→ Zone
Creates a new zone

Returns
zone (Zone): A new zone object populated only with zone_id (but not saved in the model
yet)

create_zoning_layer()

Creates the ‘zones’ table for project files that did not previously contain it

188 Chapter 3. API Reference

AequilibraE Documentation

coverage()→ Polygon
Returns a single polygon for the entire zoning coverage

Returns
model coverage (Polygon): Shapely (Multi)polygon of the zoning system.

get(zone_id: str)→ Zone
Get a zone from the model by its zone_id

all_zones()→ dict
Returns a dictionary with all Zone objects available in the model. zone_id as key

save()

get_closest_zone(geometry: Point | LineString | MultiLineString)→ int
Returns the zone in which the given geometry is located.

If the geometry is not fully enclosed by any zone, the zone closest to the geometry is returned

Arguments
geometry (Point or LineString): A Shapely geometry object

Returns
zone_id (int): ID of the zone applicable to the point provided

refresh_geo_index()

property data: DataFrame

Returns all zones data as a Pandas DataFrame

Returns
table (DataFrame): Pandas DataFrame with all the zones, complete with Geometry

extent()→ Polygon
Queries the extent of the layer included in the model

Returns
model extent (Polygon): Shapely polygon with the bounding box of the layer.

property fields: FieldEditor

Returns a FieldEditor class instance to edit the zones table fields and their metadata

3.1.3 Project Objects

Zone Single zone object that can be queried and manipulated
in memory

3.1. Project 189

AequilibraE Documentation

aequilibrae.project.Zone

class aequilibrae.project.Zone(dataset: dict, zoning)
Single zone object that can be queried and manipulated in memory

__init__(dataset: dict, zoning)

Methods

__init__(dataset, zoning)

add_centroid(point[, robust]) Adds a centroid to the network file
connect_db()

connect_mode(mode_id[, link_types, ...]) Adds centroid connectors for the desired mode to the
network file

delete() Removes the zone from the database
disconnect_mode(mode_id) Removes centroid connectors for the desired mode

from the network file
save() Saves/Updates the zone data to the database

delete()

Removes the zone from the database

save()

Saves/Updates the zone data to the database

add_centroid(point: Point, robust=True)→ None
Adds a centroid to the network file

Arguments
point (Point): Shapely Point corresponding to the desired centroid position. If None, uses
the geometric center of the zone

robust (Bool, Optional): Moves the centroid location around to avoid node conflict. Defaults
to True.

connect_mode(mode_id: str, link_types='', connectors=1, conn: Connection | None = None)→ None
Adds centroid connectors for the desired mode to the network file

Centroid connectors are created by connecting the zone centroid to one or more nodes selected from all
those that satisfy the mode and link_types criteria and are inside the zone.

The selection of the nodes that will be connected is done simply by computing running the KMeans2
clustering algorithm from SciPy and selecting the nodes closest to each cluster centroid.

When there are no node candidates inside the zone, the search area is progressively expanded until at least
one candidate is found.

If fewer candidates than required connectors are found, all candidates are connected.

Arguments
mode_id (str): Mode ID we are trying to connect

link_types (str, Optional): String with all the link type IDs that can be considered. eg:
yCdR. Defaults to ALL link types

190 Chapter 3. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans2.html

AequilibraE Documentation

connectors (int, Optional): Number of connectors to add. Defaults to 1

disconnect_mode(mode_id: str)→ None
Removes centroid connectors for the desired mode from the network file

Arguments
mode_id (str): Mode ID we are trying to disconnect from this zone

connect_db()

3.2 Network Data

Modes Access to the API resources to manipulate the modes ta-
ble in the network

LinkTypes Access to the API resources to manipulate the link_types
table in the network.

Links Access to the API resources to manipulate the links table
in the network

Nodes Access to the API resources to manipulate the links table
in the network

Periods Access to the API resources to manipulate the links table
in the network

3.2.1 aequilibrae.project.network.Modes

class aequilibrae.project.network.Modes(net)
Access to the API resources to manipulate the modes table in the network

>>> from aequilibrae import Project

>>> p = Project.from_path("/tmp/test_project")

>>> modes = p.network.modes

We can get a dictionary of all modes in the model
>>> all_modes = modes.all_modes()

And do a bulk change and save it
>>> for mode_id, mode_obj in all_modes.items():
... mode_obj.beta = 1
... mode_obj.save()

or just get one mode in specific
>>> car_mode = modes.get('c')

or just get this same mode by name
>>> car_mode = modes.get_by_name('car')

We can change the description of the mode
>>> car_mode.description = 'personal autos only'

(continues on next page)

3.2. Network Data 191

AequilibraE Documentation

(continued from previous page)

Let's say we are using alpha to store the PCE for a future year with much smaller␣
→˓cars
>>> car_mode.alpha = 0.95

To save this mode we can simply
>>> car_mode.save()

We can also create a completely new mode and add to the model
>>> new_mode = modes.new('k')
>>> new_mode.mode_name = 'flying_car' # Only ASCII letters and *_* allowed # other␣
→˓fields are not mandatory

We then explicitly add it to the network
>>> modes.add(new_mode)

we can even keep editing and save it directly once we have added it to the project
>>> new_mode.description = 'this is my new description'
>>> new_mode.save()

__init__(net)

Methods

__init__(net)

add(mode) We add a mode to the project
all_modes() Returns a dictionary with all mode objects available

in the model.
delete(mode_id) Removes the mode with mode_id from the project
get(mode_id) Get a mode from the network by its mode_id
get_by_name(mode) Get a mode from the network by its mode_name
new(mode_id) Returns a new mode with mode_id that can be added

to the model later

Attributes

fields Returns a FieldEditor class instance to edit the Modes
table fields and their metadata

add(mode: Mode)→ None
We add a mode to the project

delete(mode_id: str)→ None
Removes the mode with mode_id from the project

property fields: FieldEditor

Returns a FieldEditor class instance to edit the Modes table fields and their metadata

192 Chapter 3. API Reference

AequilibraE Documentation

get(mode_id: str)→ Mode
Get a mode from the network by its mode_id

get_by_name(mode: str)→ Mode
Get a mode from the network by its mode_name

all_modes()→ dict
Returns a dictionary with all mode objects available in the model. mode_id as key

new(mode_id: str)→ Mode
Returns a new mode with mode_id that can be added to the model later

3.2.2 aequilibrae.project.network.LinkTypes

class aequilibrae.project.network.LinkTypes(net)
Access to the API resources to manipulate the link_types table in the network.

>>> from aequilibrae import Project

>>> p = Project.from_path("/tmp/test_project")

>>> link_types = p.network.link_types

We can get a dictionary of link types in the model
>>> all_link_types = link_types.all_types()

And do a bulk change and save it
>>> for link_type_id, link_type_obj in all_link_types.items():
... link_type_obj.beta = 1

We can save changes for all link types in one go
>>> link_types.save()

or just get one link_type in specific
>>> default_link_type = link_types.get('y')

or just get it by name
>>> default_link_type = link_types.get_by_name('default')

We can change the description of the link types
>>> default_link_type.description = 'My own new description'

Let's say we are using alpha to store lane capacity during the night as 90% of␣
→˓the standard
>>> default_link_type.alpha = 0.9 * default_link_type.lane_capacity

To save this link types we can simply
>>> default_link_type.save()

We can also create a completely new link_type and add to the model
>>> new_type = link_types.new('a')
>>> new_type.link_type = 'Arterial' # Only ASCII letters and *_* allowed # other␣
→˓fields are not mandatory

(continues on next page)

3.2. Network Data 193

AequilibraE Documentation

(continued from previous page)

We then save it to the database
>>> new_type.save()

we can even keep editing and save it directly once we have added it to the project
>>> new_type.lanes = 3
>>> new_type.lane_capacity = 1100
>>> new_type.save()

__init__(net)

Methods

__init__(net)

all_types() Returns a dictionary with all LinkType objects avail-
able in the model.

delete(link_type_id) Removes the link_type with link_type_id from the
project

fields() Returns a FieldEditor class instance to edit the
Link_Types table fields and their metadata

get(link_type_id) Get a link_type from the network by its link_type_id
get_by_name(link_type) Get a link_type from the network by its link_type (i.e.

name).
new(link_type_id)

save()

new(link_type_id: str)→ LinkType

delete(link_type_id: str)→ None
Removes the link_type with link_type_id from the project

get(link_type_id: str)→ LinkType
Get a link_type from the network by its link_type_id

get_by_name(link_type: str)→ LinkType
Get a link_type from the network by its link_type (i.e. name)

fields()→ FieldEditor
Returns a FieldEditor class instance to edit the Link_Types table fields and their metadata

all_types()→ dict
Returns a dictionary with all LinkType objects available in the model. link_type_id as key

save()

194 Chapter 3. API Reference

AequilibraE Documentation

3.2.3 aequilibrae.project.network.Links

class aequilibrae.project.network.Links(net)
Access to the API resources to manipulate the links table in the network

>>> from aequilibrae import Project

>>> proj = Project.from_path("/tmp/test_project")

>>> all_links = proj.network.links

We can just get one link in specific
>>> link = all_links.get(1)

We can save changes for all links we have edited so far
>>> all_links.save()

__init__(net)

Methods

__init__(net)

copy_link(link_id) Creates a copy of a link with a new id
delete(link_id) Removes the link with link_id from the project
extent() Queries the extent of the layer included in the model
get(link_id) Get a link from the network by its link_id
new() Creates a new link
refresh () Refreshes all the links in memory
refresh_fields() After adding a field one needs to refresh all the fields

recognized by the software
save()

Attributes

data Returns all links data as a Pandas DataFrame
fields Returns a FieldEditor class instance to edit the zones

table fields and their metadata
sql Query sql for retrieving links

sql = ''

Query sql for retrieving links

get(link_id: int)→ Link
Get a link from the network by its link_id

It raises an error if link_id does not exist

3.2. Network Data 195

AequilibraE Documentation

Arguments
link_id (int): Id of a link to retrieve

Returns
link (Link): Link object for requested link_id

new()→ Link
Creates a new link

Returns
link (Link): A new link object populated only with link_id (not saved in the model yet)

copy_link(link_id: int)→ Link
Creates a copy of a link with a new id

It raises an error if link_id does not exist

Arguments
link_id (int): Id of the link to copy

Returns
link (Link): Link object for requested link_id

delete(link_id: int)→ None
Removes the link with link_id from the project

Arguments
link_id (int): Id of a link to delete

refresh_fields()→ None
After adding a field one needs to refresh all the fields recognized by the software

property data: DataFrame

Returns all links data as a Pandas DataFrame

Returns
table (DataFrame): Pandas dataframe with all the links, complete with Geometry

refresh()

Refreshes all the links in memory

save()

extent()→ Polygon
Queries the extent of the layer included in the model

Returns
model extent (Polygon): Shapely polygon with the bounding box of the layer.

property fields: FieldEditor

Returns a FieldEditor class instance to edit the zones table fields and their metadata

196 Chapter 3. API Reference

AequilibraE Documentation

3.2.4 aequilibrae.project.network.Nodes

class aequilibrae.project.network.Nodes(net)
Access to the API resources to manipulate the links table in the network

>>> from aequilibrae import Project

>>> proj = Project.from_path("/tmp/test_project")

>>> all_nodes = proj.network.nodes

We can just get one link in specific
>>> node = all_nodes.get(21)

We can save changes for all nodes we have edited so far
>>> all_nodes.save()

__init__(net)

Methods

__init__(net)

extent() Queries the extent of the layer included in the model
get(node_id) Get a node from the network by its node_id
new_centroid(node_id) Creates a new centroid with a given ID
refresh () Refreshes all the nodes in memory
refresh_fields() After adding a field one needs to refresh all the fields

recognized by the software
save()

Attributes

data Returns all nodes data as a Pandas DataFrame
fields Returns a FieldEditor class instance to edit the zones

table fields and their metadata
lonlat Returns all nodes lon/lat coords as a Pandas

DataFrame
sql Query sql for retrieving nodes

sql = ''

Query sql for retrieving nodes

get(node_id: int)→ Node
Get a node from the network by its node_id

It raises an error if node_id does not exist

3.2. Network Data 197

AequilibraE Documentation

Arguments
node_id (int): Id of a node to retrieve

Returns
node (Node): Node object for requested node_id

refresh_fields()→ None
After adding a field one needs to refresh all the fields recognized by the software

refresh()

Refreshes all the nodes in memory

new_centroid(node_id: int)→ Node
Creates a new centroid with a given ID

Arguments
node_id (int): Id of the centroid to be created

save()

property data: DataFrame

Returns all nodes data as a Pandas DataFrame

Returns
table (DataFrame): Pandas DataFrame with all the nodes, complete with Geometry

property lonlat: DataFrame

Returns all nodes lon/lat coords as a Pandas DataFrame

Returns
table (DataFrame): Pandas DataFrame with all the nodes, with geometry as lon/lat

extent()→ Polygon
Queries the extent of the layer included in the model

Returns
model extent (Polygon): Shapely polygon with the bounding box of the layer.

property fields: FieldEditor

Returns a FieldEditor class instance to edit the zones table fields and their metadata

3.2.5 aequilibrae.project.network.Periods

class aequilibrae.project.network.Periods(net)
Access to the API resources to manipulate the links table in the network

>>> from aequilibrae import Project

>>> proj = Project.from_path("/tmp/test_project")

>>> all_periods = proj.network.periods

We can just get one link in specific
>>> period = all_periods.get(21)

We can save changes for all periods we have edited so far
>>> all_periods.save()

198 Chapter 3. API Reference

AequilibraE Documentation

__init__(net)

Methods

__init__(net)

extent() Queries the extent of the layer included in the model
get(period_id) Get a period from the network by its period_id
new_period(period_id, start, end[, description]) Creates a new period with a given ID
refresh () Refreshes all the periods in memory
refresh_fields() After adding a field one needs to refresh all the fields

recognized by the software
save()

Attributes

data Returns all periods data as a Pandas DataFrame
default_period

fields Returns a FieldEditor class instance to edit the zones
table fields and their metadata

sql Query sql for retrieving periods

sql = ''

Query sql for retrieving periods

extent()

Queries the extent of the layer included in the model

Returns
model extent (Polygon): Shapely polygon with the bounding box of the layer.

get(period_id: int)→ Period
Get a period from the network by its period_id

It raises an error if period_id does not exist

Arguments
period_id (int): Id of a period to retrieve

Returns
period (Period): Period object for requested period_id

refresh_fields()→ None
After adding a field one needs to refresh all the fields recognized by the software

refresh()

Refreshes all the periods in memory

3.2. Network Data 199

AequilibraE Documentation

new_period(period_id: int, start: int, end: int, description: str | None = None)→ Period
Creates a new period with a given ID

Arguments
period_id (int): Id of the centroid to be created

start (int): Start time of the period to be created

end (int): End time of the period to be created

description (str): Optional human readable description of the time period e.g. ‘1pm - 5pm’

save()

property data: DataFrame

Returns all periods data as a Pandas DataFrame

Returns
table (DataFrame): Pandas DataFrame with all the periods

property default_period: Period

property fields: FieldEditor

Returns a FieldEditor class instance to edit the zones table fields and their metadata

3.3 Network Items

Mode A mode object represents a single record in the modes
table

LinkType A link_type object represents a single record in the
link_types table

Link A Link object represents a single record in the links table
Node A Node object represents a single record in the nodes

table
Period A Period object represents a single record in the periods

table

3.3.1 aequilibrae.project.network.Mode

class aequilibrae.project.network.Mode(mode_id: str, project)
A mode object represents a single record in the modes table

__init__(mode_id: str, project)→ None

200 Chapter 3. API Reference

AequilibraE Documentation

Methods

__init__(mode_id, project)

save()

save()

3.3.2 aequilibrae.project.network.LinkType

class aequilibrae.project.network.LinkType(data_set: dict, project)
A link_type object represents a single record in the link_types table

__init__(data_set: dict, project)→ None

Methods

__init__(data_set, project)

connect_db()

delete()

save()

delete()

save()

connect_db()

3.3.3 aequilibrae.project.network.Link

class aequilibrae.project.network.Link(dataset, project)
A Link object represents a single record in the links table

>>> from aequilibrae import Project

>>> proj = Project.from_path("/tmp/test_project")

>>> all_links = proj.network.links

Let's get a mode to work with
>>> modes = proj.network.modes
>>> car_mode = modes.get('c')

(continues on next page)

3.3. Network Items 201

AequilibraE Documentation

(continued from previous page)

We can just get one link in specific
>>> link1 = all_links.get(3)
>>> link2 = all_links.get(17)

We can find out which fields exist for the links
>>> which_fields_do_we_have = link1.data_fields()

And edit each one like this
>>> link1.lanes_ab = 3
>>> link1.lanes_ba = 2

we can drop a mode from the link
>>> link1.drop_mode(car_mode) # or link1.drop_mode('c')

we can add a mode to the link
>>> link2.add_mode(car_mode) # or link2.add_mode('c')

Or set all modes at once
>>> link2.set_modes('cbtw')

We can just save the link
>>> link1.save()
>>> link2.save()

__init__(dataset, project)

Methods

__init__(dataset, project)

add_mode(mode) Adds a new mode to this link
connect_db()

data_fields() lists all data fields for the link, as available in the
database

delete() Deletes link from database
drop_mode(mode) Removes a mode from this link
save() Saves link to database
set_modes(modes) Sets the modes acceptable for this link

delete()

Deletes link from database

save()

Saves link to database

set_modes(modes: str)
Sets the modes acceptable for this link

Arguments
modes (str): string with all mode_ids to be assigned to this link

202 Chapter 3. API Reference

AequilibraE Documentation

add_mode(mode: str | Mode)
Adds a new mode to this link

Raises a warning if mode is already allowed on the link, and fails if mode does not exist

Arguments
mode_id (str or Mode): Mode_id of the mode or mode object to be added to the link

drop_mode(mode: str | Mode)
Removes a mode from this link

Raises a warning if mode is already NOT allowed on the link, and fails if mode does not exist

Arguments
mode_id (str or Mode): Mode_id of the mode or mode object to be removed from the link

data_fields()→ list
lists all data fields for the link, as available in the database

Returns
data fields (list): list of all fields available for editing

connect_db()

3.3.4 aequilibrae.project.network.Node

class aequilibrae.project.network.Node(dataset, project)
A Node object represents a single record in the nodes table

>>> from aequilibrae import Project
>>> from shapely.geometry import Point

>>> proj = Project.from_path("/tmp/test_project")

>>> all_nodes = proj.network.nodes

We can just get one link in specific
>>> node1 = all_nodes.get(7)

We can find out which fields exist for the links
>>> which_fields_do_we_have = node1.data_fields()

It success if the node_id already does not exist
>>> node1.renumber(998877)

>>> node1.geometry = Point(1,2)

We can just save the node
>>> node1.save()

__init__(dataset, project)

3.3. Network Items 203

AequilibraE Documentation

Methods

__init__(dataset, project)

connect_db()

connect_mode(area, mode_id[, link_types, ...]) Adds centroid connectors for the desired mode to the
network file

data_fields() lists all data fields for the node, as available in the
database

renumber(new_id) Renumbers the node in the network
save() Saves node to database

save()

Saves node to database

data_fields()→ list
lists all data fields for the node, as available in the database

Returns
data fields (list): list of all fields available for editing

renumber(new_id: int)
Renumbers the node in the network

Logs a warning if another node already exists with this node_id

Arguments
new_id (int): New node_id

connect_mode(area: Polygon, mode_id: str, link_types='', connectors=1, conn: Connection | None = None)
Adds centroid connectors for the desired mode to the network file

Centroid connectors are created by connecting the zone centroid to one or more nodes selected from all
those that satisfy the mode and link_types criteria and are inside the provided area.

The selection of the nodes that will be connected is done simply by computing running the KMeans2
clustering algorithm from SciPy and selecting the nodes closest to each cluster centroid.

When there are no node candidates inside the provided area, is it progressively expanded until at least one
candidate is found.

If fewer candidates than required connectors are found, all candidates are connected.

Arguments
area (Polygon): Initial area where AequilibraE will look for nodes to connect

mode_id (str): Mode ID we are trying to connect

link_types (str, Optional): String with all the link type IDs that can be considered. eg:
yCdR. Defaults to ALL link types

connectors (int, Optional): Number of connectors to add. Defaults to 1

connect_db()

204 Chapter 3. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.vq.kmeans2.html

AequilibraE Documentation

3.3.5 aequilibrae.project.network.Period

class aequilibrae.project.network.Period(dataset, project)
A Period object represents a single record in the periods table

>>> from aequilibrae import Project

>>> proj = Project.from_path("/tmp/test_project")

>>> all_periods = proj.network.periods

We can just get one link in specific
>>> period1 = all_periods.get(1)

We can find out which fields exist for the period
>>> which_fields_do_we_have = period1.data_fields()

It succeeds if the period_id already does not exist
>>> period1.renumber(998877)

We can just save the period
>>> period1.save()

__init__(dataset, project)

Methods

__init__(dataset, project)

connect_db()

data_fields() Lists all data fields for the period, as available in the
database

renumber(new_id) Renumbers the period in the network
save() Saves period to database

save()

Saves period to database

data_fields()→ list
Lists all data fields for the period, as available in the database

Returns
data fields (list): list of all fields available for editing

renumber(new_id: int)
Renumbers the period in the network

Logs a warning if another period already exists with this period_id

Arguments
new_id (int): New period_id

connect_db()

3.3. Network Items 205

AequilibraE Documentation

3.4 Parameters

Parameters Global parameters module

3.4.1 aequilibrae.Parameters

class aequilibrae.Parameters(project=None)
Global parameters module

Parameters are used in many procedures, and are often defined only in the parameters.yml file ONLY Parameters
are organized in the following groups:

• assignment

• distribution

• system

• report zeros

• temp directory

>>> from aequilibrae import Project, Parameters

>>> project = Project()
>>> project.new(tmp_path_empty)

>>> p = Parameters(project)

>>> p.parameters['system']['logging_directory'] = "/tmp/other_folder"
>>> p.parameters['osm']['overpass_endpoint'] = "http://192.168.0.110:32780/api"
>>> p.parameters['osm']['max_query_area_size'] = 10000000000
>>> p.parameters['osm']['sleeptime'] = 0
>>> p.write_back()

>>> # You can also restore the software default values
>>> p.restore_default()

__init__(project=None)
Loads parameters from file. The place is always the same. The root of the package

Methods

__init__([project]) Loads parameters from file.
restore_default() Restores parameters to generic default
write_back() Writes the parameters back to file

206 Chapter 3. API Reference

AequilibraE Documentation

Attributes

file_default

file_default: str = '/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/
site-packages/aequilibrae/parameters.yml'

write_back()

Writes the parameters back to file

restore_default()

Restores parameters to generic default

3.5 Distribution

Ipf ([project]) Iterative proportional fitting procedure
GravityApplication([project]) Applies a synthetic gravity model.
GravityCalibration([project]) Calibrate a traditional gravity model
SyntheticGravityModel() Simple class object to represent synthetic gravity models

3.5.1 aequilibrae.distribution.Ipf

class aequilibrae.distribution.Ipf(project=None, **kwargs)
Iterative proportional fitting procedure

>>> from aequilibrae import Project
>>> from aequilibrae.distribution import Ipf
>>> from aequilibrae.matrix import AequilibraeMatrix, AequilibraeData

>>> project = Project.from_path("/tmp/test_project_ipf")

>>> matrix = AequilibraeMatrix()

Here we can create from OMX or load from an AequilibraE matrix.
>>> matrix.load('/tmp/test_project/matrices/demand.omx')
>>> matrix.computational_view()

>>> args = {"entries": matrix.zones, "field_names": ["productions", "attractions"],
... "data_types": [np.float64, np.float64], "memory_mode": True}

>>> vectors = AequilibraeData()
>>> vectors.create_empty(**args)

>>> vectors.productions[:] = matrix.rows()[:]
>>> vectors.attractions[:] = matrix.columns()[:]

We assume that the indices would be sorted and that they would match the matrix␣
(continues on next page)

3.5. Distribution 207

AequilibraE Documentation

(continued from previous page)

→˓indices
>>> vectors.index[:] = matrix.index[:]

>>> args = {
... "matrix": matrix, "rows": vectors, "row_field": "productions", "columns
→˓": vectors,
... "column_field": "attractions", "nan_as_zero": False}

>>> fratar = Ipf(**args)

>>> fratar.fit()

We can get back to our OMX matrix in the end
>>> fratar.output.export("/tmp/to_omx_output.omx")
>>> fratar.output.export("/tmp/to_aem_output.aem")

__init__(project=None, **kwargs)
Instantiates the IPF problem

Arguments
matrix (AequilibraeMatrix): Seed Matrix

rows (AequilibraeData): Vector object with data for row totals

row_field (str): Field name that contains the data for the row totals

columns (AequilibraeData): Vector object with data for column totals

column_field (str): Field name that contains the data for the column totals

parameters (str, Optional): Convergence parameters. Defaults to those in the parameter
file

nan_as_zero (bool, Optional): If Nan values should be treated as zero. Defaults to True

Results
output (AequilibraeMatrix): Result Matrix

report (list): Iteration and convergence report

error (str): Error description

Methods

__init__([project]) Instantiates the IPF problem
fit() Runs the IPF instance problem to adjust the matrix
save_to_project(name, file_name[, project]) Saves the matrix output to the project file

fit()

Runs the IPF instance problem to adjust the matrix

Resulting matrix is the output class member

save_to_project(name: str, file_name: str, project=None)→ MatrixRecord
Saves the matrix output to the project file

208 Chapter 3. API Reference

AequilibraE Documentation

Arguments
name (str): Name of the desired matrix record

file_name (str): Name for the matrix file name. AEM and OMX supported

project (Project, Optional): Project we want to save the results to. Defaults to the active
project

3.5.2 aequilibrae.distribution.GravityApplication

class aequilibrae.distribution.GravityApplication(project=None, **kwargs)
Applies a synthetic gravity model.

Model is an instance of SyntheticGravityModel class. Impedance is an instance of AequilibraEMatrix. Row and
Column vectors are instances of AequilibraeData.

>>> import pandas as pd
>>> from aequilibrae import Project
>>> from aequilibrae.matrix import AequilibraeMatrix, AequilibraeData
>>> from aequilibrae.distribution import SyntheticGravityModel, GravityApplication

>>> project = Project.from_path("/tmp/test_project_ga")

We define the model we will use
>>> model = SyntheticGravityModel()

Before adding a parameter to the model, you need to define the model functional␣
→˓form
>>> model.function = "GAMMA" # "EXPO" or "POWER"

Only the parameter(s) applicable to the chosen functional form will have any␣
→˓effect
>>> model.alpha = 0.1
>>> model.beta = 0.0001

Or you can load the model from a file
model.load('path/to/model/file')

We load the impedance matrix
>>> matrix = AequilibraeMatrix()
>>> matrix.load('/tmp/test_project_ga/matrices/skims.omx')
>>> matrix.computational_view(['distance_blended'])

We create the vectors we will use
>>> query = "SELECT zone_id, population, employment FROM zones;"
>>> df = pd.read_sql(query, project.conn)
>>> df.sort_values(by="zone_id", inplace=True)

You create the vectors you would have
>>> df = df.assign(production=df.population * 3.0)
>>> df = df.assign(attraction=df.employment * 4.0)

>>> zones = df.index.shape[0]

(continues on next page)

3.5. Distribution 209

AequilibraE Documentation

(continued from previous page)

We create the vector database
>>> args = {"entries": zones, "field_names": ["productions", "attractions"],
... "data_types": [np.float64, np.float64], "memory_mode": True}
>>> vectors = AequilibraeData()
>>> vectors.create_empty(**args)

Assign the data to the vector object
>>> vectors.productions[:] = df.production.values[:]
>>> vectors.attractions[:] = df.attraction.values[:]
>>> vectors.index[:] = df.zone_id.values[:]

Balance the vectors
>>> vectors.attractions[:] *= vectors.productions.sum() / vectors.attractions.sum()

Create the problem object
>>> args = {"impedance": matrix,
... "rows": vectors,
... "row_field": "productions",
... "model": model,
... "columns": vectors,
... "column_field": "attractions",
... "output": '/tmp/test_project_ga/matrices/matrix.aem',
... "nan_as_zero":True
... }
>>> gravity = GravityApplication(**args)

Solve and save the outputs
>>> gravity.apply()
>>> gravity.output.export('/tmp/test_project_ga/matrices/omx_file.omx')

To save your report into a file, you can do the following:
with open('/tmp/test_project_ga/report.txt', 'w') as file:
for line in gravity.report:
file.write(f"{line}\n")

__init__(project=None, **kwargs)
Instantiates the IPF problem

Arguments
model (SyntheticGravityModel): Synthetic gravity model to apply

impedance (AequilibraeMatrix): Impedance matrix to be used

rows (AequilibraeData): Vector object with data for row totals

row_field (str): Field name that contains the data for the row totals

columns (AequilibraeData): Vector object with data for column totals

column_field (str): Field name that contains the data for the column totals

project (Project, Optional): The Project to connect to. By default, uses the currently active
project

core_name (str, Optional): Name for the output matrix core. Defaults to “gravity”

210 Chapter 3. API Reference

AequilibraE Documentation

parameters (str, Optional): Convergence parameters. Defaults to those in the parameter
file

nan_as_zero (bool, Optional): If NaN values should be treated as zero. Defaults to True

Results
output (AequilibraeMatrix): Result Matrix

report (list): Iteration and convergence report

error (str): Error description

Methods

__init__([project]) Instantiates the IPF problem
apply() Runs the Gravity Application instance as instantiated
save_to_project(name, file_name[, project]) Saves the matrix output to the project file

apply()

Runs the Gravity Application instance as instantiated

Resulting matrix is the output class member

save_to_project(name: str, file_name: str, project=None)→ None
Saves the matrix output to the project file

Arguments
name (str): Name of the desired matrix record

file_name (str): Name for the matrix file name. AEM and OMX supported

project (Project, Optional): Project we want to save the results to. Defaults to the active
project

3.5.3 aequilibrae.distribution.GravityCalibration

class aequilibrae.distribution.GravityCalibration(project=None, **kwargs)
Calibrate a traditional gravity model

Available deterrence function forms are: ‘EXPO’ or ‘POWER’. ‘GAMMA’

>>> from aequilibrae import Project
>>> from aequilibrae.matrix import AequilibraeMatrix
>>> from aequilibrae.distribution import GravityCalibration

>>> project = Project.from_path("/tmp/test_project_gc")

We load the impedance matrix
>>> matrix = AequilibraeMatrix()
>>> matrix.load('/tmp/test_project_gc/matrices/demand.omx')
>>> matrix.computational_view(['matrix'])

We load the impedance matrix
>>> impedmatrix = AequilibraeMatrix()

(continues on next page)

3.5. Distribution 211

AequilibraE Documentation

(continued from previous page)

>>> impedmatrix.load('/tmp/test_project_gc/matrices/skims.omx')
>>> impedmatrix.computational_view(['time_final'])

Creates the problem
>>> args = {"matrix": matrix,
... "impedance": impedmatrix,
... "row_field": "productions",
... "function": 'expo',
... "nan_as_zero": True}
>>> gravity = GravityCalibration(**args)

Solve and save outputs
>>> gravity.calibrate()
>>> gravity.model.save('/tmp/test_project_gc/dist_expo_model.mod')

To save the model report in a file
with open('/tmp/test_project_gc/report.txt', 'w') as f:
for line in gravity.report:
f.write(f'{line}\n')

__init__(project=None, **kwargs)
Instantiates the Gravity calibration problem

Arguments
matrix (AequilibraeMatrix): Seed/base trip matrix

impedance (AequilibraeMatrix): Impedance matrix to be used

function (str): Function name to be calibrated. “EXPO” or “POWER”

project (Project, Optional): The Project to connect to. By default, uses the currently active
project

parameters (str, Optional): Convergence parameters. Defaults to those in the parameter
file

nan_as_zero (bool, Optional): If Nan values should be treated as zero. Defaults to True

Results
model (SyntheticGravityModel): Calibrated model

report (list): Iteration and convergence report

error (str): Error description

Methods

__init__([project]) Instantiates the Gravity calibration problem
calibrate() Calibrate the model

calibrate()

Calibrate the model

Resulting model is in output class member

212 Chapter 3. API Reference

AequilibraE Documentation

3.5.4 aequilibrae.distribution.SyntheticGravityModel

class aequilibrae.distribution.SyntheticGravityModel

Simple class object to represent synthetic gravity models

__init__()

Methods

__init__()

load(file_name) Loads model from disk.
save(file_name) Saves model to disk in yaml format.

load(file_name)
Loads model from disk. Extension is *.mod

save(file_name)
Saves model to disk in yaml format. Extension is *.mod

3.6 Matrix

AequilibraeData AequilibraE dataset
AequilibraeMatrix Matrix class

3.6.1 aequilibrae.matrix.AequilibraeData

class aequilibrae.matrix.AequilibraeData

AequilibraE dataset

__init__()

Methods

__init__()

create_empty([file_path, entries, ...]) Creates a new empty dataset
empty(*args, **kwargs)

export(file_name[, table_name]) Exports the dataset to another format.
load(file_path) Loads dataset from file
random_name() Returns a random name for a dataset with root in the

temp directory of the user

classmethod empty(*args, **kwargs)

3.6. Matrix 213

AequilibraE Documentation

create_empty(file_path=None, entries=1, field_names=None, data_types=None, memory_mode=False,
fill=None, index=None)

Creates a new empty dataset

Arguments
file_path (str, Optional): Full path for the output data file. If memory_mode is ‘false’ and
path is missing, then the file is created in the temp folder

entries (int, Optional): Number of records in the dataset. Default is 1

field_names (list, Optional): List of field names for this dataset. If no list is provided, the
field ‘data’ will be created

data_types (np.dtype, Optional): List of data types for the dataset. Types need to be NumPy
data types (e.g. np.int16, np.float64). If no list of types are provided, type will be np.
float64

memory_mode (bool, Optional): If True, dataset will be kept in memory. If False, the
dataset will be a memory-mapped numpy array

>>> from aequilibrae.matrix import AequilibraeData, AequilibraeMatrix

>>> mat = AequilibraeMatrix()
>>> mat.load('/tmp/test_project/matrices/demand.omx')
>>> mat.computational_view()

>>> vectors = "/tmp/test_project/vectors.aed"

>>> args = {
... "file_path": vectors,
... "entries": mat.zones,
... "field_names": ["origins", "destinations"],
... "data_types": [np.float64, np.float64]
... }

>>> dataset = AequilibraeData()
>>> dataset.create_empty(**args)

load(file_path)
Loads dataset from file

Arguments
file_path (str): Full file path to the AequilibraeData to be loaded

>>> from aequilibrae.matrix import AequilibraeData

>>> dataset = AequilibraeData()
>>> dataset.load("/tmp/test_project/vectors.aed")

export(file_name, table_name='aequilibrae_table')
Exports the dataset to another format. Supports CSV and SQLite

Arguments
file_name (str): File name with PATH and extension (csv, or sqlite3, sqlite or db)

table_name (str): It only applies if you are saving to an SQLite table. Otherwise ignored

214 Chapter 3. API Reference

AequilibraE Documentation

>>> from aequilibrae.matrix import AequilibraeData

>>> dataset = AequilibraeData()
>>> dataset.load("/tmp/test_project/vectors.aed")
>>> dataset.export("/tmp/test_project/vectors.csv")

static random_name()

Returns a random name for a dataset with root in the temp directory of the user

>>> from aequilibrae.matrix import AequilibraeData

>>> name = AequilibraeData().random_name()

This is an example of output
'/tmp/Aequilibrae_data_5werr5f36-b123-asdf-4587-adfglkjhqwe.aed'

3.6.2 aequilibrae.matrix.AequilibraeMatrix

class aequilibrae.matrix.AequilibraeMatrix

Matrix class

__init__()

Creates a memory instance for a matrix, that can be used to load an existing matrix or to create an empty
one

3.6. Matrix 215

AequilibraE Documentation

Methods

__init__() Creates a memory instance for a matrix, that can be
used to load an existing matrix or to create an empty
one

close() Removes matrix from memory and flushes all data to
disk, or closes the OMX file if that is the case

columns() Returns column vector for the matrix in the computa-
tional view

computational_view([core_list]) Creates a memory view for a list of matrices that is
compatible with Cython memory buffers

copy([output_name, cores, names, compress, ...]) Copies a list of cores (or all cores) from one matrix
file to another one

create_empty([file_name, zones, ...]) Creates an empty matrix in the AequilibraE format
create_from_omx(file_path, omx_path[, ...]) Creates an AequilibraeMatrix from an original Open-

Matrix
create_from_trip_list(path_to_file, ...) Creates an AequilibraeMatrix from a trip list csv file

The output is saved in the same folder as the trip list
file

export(output_name[, cores]) Exports the matrix to other formats, rather than AEM.
get_matrix(core[, copy]) Returns the data for a matrix core
is_omx() Returns True if matrix data source is OMX, False

otherwise
load(file_path) Loads matrix from disk.
nan_to_num() Converts all NaN values in all cores in the computa-

tional view to zeros
random_name() Returns a random name for a matrix with root in the

temp directory of the user
rows() Returns row vector for the matrix in the computa-

tional view
save([names, file_name]) Saves matrix data back to file.
setDescription(matrix_description) Sets description for the matrix
setName(matrix_name) Sets the name for the matrix itself
set_index(index_to_set) Sets the standard index to be the one the user wants

to have be the one being used in all operations during
run time.

save(names=(), file_name=None)→ None
Saves matrix data back to file.

If working with AEM file, it flushes data to disk. If working with OMX, requires new names.

Arguments
names (tuple(str), Optional): New names for the matrices. Required if working with
OMX files

create_empty(file_name: str | None = None, zones: int | None = None, matrix_names: ~typing.List[str] |
None = None, data_type: ~numpy.dtype = <class 'numpy.float64'>, index_names:
~typing.List[str] | None = None, compressed: bool = False, memory_only: bool = True)

Creates an empty matrix in the AequilibraE format

Arguments
file_name (str): Local path to the matrix file

216 Chapter 3. API Reference

AequilibraE Documentation

zones (int): Number of zones in the model (Integer). Maximum number of zones in a matrix
is 4,294,967,296

matrix_names (list): A regular Python list of names of the matrix. Limit is 50 characters
each. Maximum number of cores per matrix is 256

data_type (np.dtype, Optional): Data type of the matrix as NUMPY data types (np.int32,
np.int64, np.float32, np.float64). Defaults to np.float64

index_names (list, Optional): A regular Python list of names for indices. Limit is 20
characters each. Maximum number of indices per matrix is 256

compressed (bool, Optional): Whether it is a flat matrix or a compressed one (Boolean -
Not yet implemented)

memory_only (bool, Optional): Whether you want to keep the matrix copy in memory only.
Defaults to True

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> zones_in_the_model = 3317
>>> names_list = ['Car trips', 'pt trips', 'DRT trips', 'bike trips', 'walk␣
→˓trips']

>>> mat = AequilibraeMatrix()
>>> mat.create_empty(file_name='/tmp/path_to_matrix.aem',
... zones=zones_in_the_model,
... matrix_names=names_list,
... memory_only=False,)
>>> mat.num_indices
1
>>> mat.zones
3317

get_matrix(core: str, copy=False)→ ndarray
Returns the data for a matrix core

Arguments
core (str): name of the matrix core to be returned

copy (bool, Optional): return a copy of the data. Defaults to False

Returns
object (np.ndarray): NumPy array

create_from_omx(file_path: str, omx_path: str, cores: List[str] | None = None, mappings: List[str] | None
= None, robust: bool = True, compressed: bool = False, memory_only: bool = True)→
None

Creates an AequilibraeMatrix from an original OpenMatrix

Arguments
file_path (str): Path for the output AequilibraEMatrix

omx_path (str): Path to the OMX file one wants to import

cores (list): List of matrix cores to be imported

mappings (list): List of the matrix mappings (i.e. indices, centroid numbers) to be imported

robust (bool, Optional): Boolean for whether AequilibraE should try to adjust the names
for cores and indices in case they are too long. Defaults to True

3.6. Matrix 217

AequilibraE Documentation

compressed (bool, Optional): Boolean for whether we should compress the output matrix.
Not yet implemented

memory_only (bool, Optional): Whether you want to keep the matrix copy in memory only.
Defaults to True

create_from_trip_list(path_to_file: str, from_column: str, to_column: str, list_cores: List[str])→ str
Creates an AequilibraeMatrix from a trip list csv file The output is saved in the same folder as the trip list
file

Arguments
path_to_file (str): Path for the trip list csv file

from_column (str): trip list file column containing the origin zones numbers

from_column (str): trip list file column containing the destination zones numbers

list_cores (list): list of core columns in the trip list file

set_index(index_to_set: str)→ None
Sets the standard index to be the one the user wants to have be the one being used in all operations during
run time. The first index is ALWAYS the default one every time the matrix is instantiated

Arguments
index_to_set (str): Name of the index to be used. The default index name is ‘main_index’

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> zones_in_the_model = 3317
>>> names_list = ['Car trips', 'pt trips', 'DRT trips', 'bike trips', 'walk␣
→˓trips']
>>> index_list = ['tazs', 'census']

>>> mat = AequilibraeMatrix()
>>> mat.create_empty(file_name="/tmp/path_to_new_matrix.aem",
... zones=zones_in_the_model,
... matrix_names=names_list,
... index_names=index_list)
>>> mat.num_indices
2
>>> mat.current_index
'tazs'
>>> mat.set_index('census')
>>> mat.current_index
'census'

close()

Removes matrix from memory and flushes all data to disk, or closes the OMX file if that is the case

export(output_name: str, cores: List[str] | None = None)
Exports the matrix to other formats, rather than AEM. Formats currently supported: CSV, OMX

When exporting to AEM or OMX, the user can chose to export only a set of cores, but all indices are
exported

When exporting to CSV, the active index will be used, and all cores will be exported as separate columns
in the output file

218 Chapter 3. API Reference

AequilibraE Documentation

Arguments
output_name (str): Path to the output file

cores (list): Names of the cores to be exported.

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> zones_in_the_model = 3317
>>> names_list = ['Car trips', 'pt trips', 'DRT trips', 'bike trips', 'walk␣
→˓trips']

>>> mat = AequilibraeMatrix()
>>> mat.create_empty(file_name='/tmp/path_to_matrix.aem',
... zones=zones_in_the_model,
... matrix_names=names_list)
>>> mat.cores
5
>>> mat.export('/tmp/my_new_path.aem', ['Car trips', 'bike trips'])

>>> mat2 = AequilibraeMatrix()
>>> mat2.load('/tmp/my_new_path.aem')
>>> mat2.cores
2

load(file_path: str)
Loads matrix from disk. All cores and indices are load. First index is default.

Arguments
file_path (str): Path to AEM or OMX file on disk

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> mat = AequilibraeMatrix()
>>> mat.load('/tmp/path_to_matrix.aem')
>>> mat.computational_view(["bike trips"])
>>> mat.names
['Car trips', 'pt trips', 'DRT trips', 'bike trips', 'walk trips']

is_omx()

Returns True if matrix data source is OMX, False otherwise

computational_view(core_list: List[str] | None = None)
Creates a memory view for a list of matrices that is compatible with Cython memory buffers

It allows for AequilibraE matrices to be used in all parallelized algorithms within AequilibraE

In case of OMX matrices, the computational view is held only in memory

Arguments
core_list (list): List with the names of all matrices that need to be in the buffer

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> zones_in_the_model = 3317
>>> names_list = ['Car trips', 'pt trips', 'DRT trips', 'bike trips', 'walk␣
→˓trips']

(continues on next page)

3.6. Matrix 219

AequilibraE Documentation

(continued from previous page)

>>> mat = AequilibraeMatrix()
>>> mat.create_empty(file_name='/tmp/path_to_matrix.aem',
... zones=zones_in_the_model,
... matrix_names=names_list)
>>> mat.computational_view(['bike trips', 'walk trips'])
>>> mat.view_names
['bike trips', 'walk trips']

copy(output_name: str | None = None, cores: List[str] | None = None, names: List[str] | None = None,
compress: bool | None = None, memory_only: bool = True)

Copies a list of cores (or all cores) from one matrix file to another one

Arguments
output_name (str): Name of the new matrix file. If none is provided, returns a copy in
memory only

cores (list):List of the matrix cores to be copied

names (list, Optional): List with the new names for the cores. Defaults to current names

compress (bool, Optional): Whether you want to compress the matrix or not. Defaults to
False. Not yet implemented

memory_only (bool, Optional): Whether you want to keep the matrix copy in memory only.
Defaults to True

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> zones_in_the_model = 3317
>>> names_list = ['Car trips', 'pt trips', 'DRT trips', 'bike trips', 'walk␣
→˓trips']

>>> mat = AequilibraeMatrix()
>>> mat.create_empty(file_name='/tmp/path_to_matrix.aem', zones=zones_in_the_
→˓model, matrix_names= names_list)
>>> mat.copy('/tmp/path_to_copy.aem',
... cores=['bike trips', 'walk trips'],
... names=['bicycle', 'walking'],
... memory_only=False)
<aequilibrae.matrix.aequilibrae_matrix.AequilibraeMatrix object at 0x...>

>>> mat2 = AequilibraeMatrix()
>>> mat2.load('/tmp/path_to_copy.aem')
>>> mat2.cores
2

rows()→ ndarray
Returns row vector for the matrix in the computational view

Computational view needs to be set to a single matrix core

Returns
object (np.ndarray): the row totals for the matrix currently on the computational view

220 Chapter 3. API Reference

AequilibraE Documentation

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> mat = AequilibraeMatrix()
>>> mat.load('/tmp/test_project/matrices/skims.omx')
>>> mat.computational_view(["distance_blended"])
>>> mat.rows()
array([357.68202084, 358.68778868, 310.68285491, 275.87964738,

265.91709918, 268.60184371, 267.32264726, 281.3793747 ,
286.15085073, 242.60308705, 252.1776242 , 305.56774194,
303.58100777, 270.48841269, 263.20417379, 253.92665702,
277.1655432 , 258.84368258, 280.65697316, 272.7651157 ,
264.06806038, 252.87533845, 273.45639965, 281.61102767])

columns()→ ndarray
Returns column vector for the matrix in the computational view

Computational view needs to be set to a single matrix core

Returns
object (np.ndarray): the column totals for the matrix currently on the computational view

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> mat = AequilibraeMatrix()
>>> mat.load('/tmp/test_project/matrices/skims.omx')
>>> mat.computational_view(["distance_blended"])
>>> mat.columns()
array([357.54256811, 357.45109051, 310.88655449, 276.6783439 ,

266.70388637, 270.62976319, 266.32888632, 279.6897402 ,
285.89821842, 242.79743295, 252.34085912, 301.78116548,
302.97058146, 270.61855294, 264.59944248, 257.83842251,
276.63310578, 257.74513863, 281.15724257, 271.63886077,
264.62215032, 252.79791125, 273.18139747, 282.7636574])

nan_to_num()

Converts all NaN values in all cores in the computational view to zeros

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> mat = AequilibraeMatrix()
>>> mat.load('/tmp/path_to_matrix.aem')
>>> mat.computational_view(["bike trips"])
>>> mat.nan_to_num()

setName(matrix_name: str)
Sets the name for the matrix itself

Arguments
matrix_name (str): matrix name. Maximum length is 50 characters

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> mat = AequilibraeMatrix()
>>> mat.create_empty(file_name="matrix.aem", zones=3317, memory_only=False)

(continues on next page)

3.6. Matrix 221

AequilibraE Documentation

(continued from previous page)

>>> mat.setName('This is my example')
>>> mat.name
''

setDescription(matrix_description: str)
Sets description for the matrix

Arguments
matrix_description (str): Text with matrix description. Maximum length is 144 characters

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> mat = AequilibraeMatrix()
>>> mat.create_empty(file_name="matrix.aem", zones=3317, memory_only=False)
>>> mat.setDescription('This is some text about this matrix of mine')
>>> mat.save()
>>> mat.close()

>>> mat = AequilibraeMatrix()
>>> mat.load("matrix.aem")
>>> mat.description.decode('utf-8')
'This is some text ab'

static random_name()→ str
Returns a random name for a matrix with root in the temp directory of the user

>>> from aequilibrae.matrix import AequilibraeMatrix

>>> name = AequilibraeMatrix().random_name()

This is an example of output
'/tmp/Aequilibrae_matrix_54625f36-bf41-4c85-80fb-7fc2e3f3d76e.aem'

222 Chapter 3. API Reference

AequilibraE Documentation

3.7 Paths

Graph

TransitGraph

AssignmentResults Assignment result holder for a single TrafficClass
with multiple user classes

TransitAssignmentResults Assignment result holder for a single Transit
SkimResults Network skimming result holder.
PathResults Path computation result holder
VDF Volume-Delay function
TrafficClass Traffic class for equilibrium traffic assignment
TransitClass

TrafficAssignment Traffic assignment class.
TransitAssignment

HyperpathGenerating A class for hyperpath generation.
OptimalStrategies

3.7.1 aequilibrae.paths.Graph

class aequilibrae.paths.Graph(*args, **kwargs)

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

available_skims() Returns graph fields that are available to be set as
skims

create_compressed_link_network_mapping() Create two arrays providing a mapping of compressed
id to link id.

default_types(tp) Returns the default integer and float types used for
computation

exclude_links(links) Excludes a list of links from a graph by setting their
B node equal to their A node

load_from_disk(filename) Loads graph from disk
prepare_graph (centroids) Prepares the graph for a computation for a certain set

of centroids
save_compressed_correspondence(path, ...) Save graph and nodes_to_indices to disk
save_to_disk(filename) Saves graph to disk
set_blocked_centroid_flows(block_centroid_flows)Chooses whether we want to block paths to go

through centroids or not.
set_graph (cost_field) Sets the field to be used for path computation
set_skimming(skim_fields) Sets the list of skims to be computed

3.7. Paths 223

AequilibraE Documentation

available_skims()→ List[str]
Returns graph fields that are available to be set as skims

Returns
list (str): Field names

create_compressed_link_network_mapping()

Create two arrays providing a mapping of compressed id to link id.

Uses sparse compression. Index idx by the by compressed id and compressed id + 1, the network IDs are
then in the range idx[id]:idx[id + 1].

>>> idx, data = graph.compressed_link_network_mapping
>>> data[idx[id]:idx[id + 1]] # ==> Slice of network ID's corresponding to the␣
→˓compressed ID

Links not in the compressed graph are not contained within the data array.

Returns
idx (np.array): index array for data data (np.array): array of link ids

default_types(tp: str)
Returns the default integer and float types used for computation

Arguments
tp (str): data type. ‘int’ or ‘float’

exclude_links(links: list)→ None
Excludes a list of links from a graph by setting their B node equal to their A node

Arguments
links (list): List of link IDs to be excluded from the graph

load_from_disk(filename: str)→ None
Loads graph from disk

Arguments
filename (str): Path to file

prepare_graph(centroids: ndarray | None)→ None
Prepares the graph for a computation for a certain set of centroids

Under the hood, if sets all centroids to have IDs from 1 through n, which should correspond to the index of
the matrix being assigned.

This is what enables having any node IDs as centroids, and it relies on the inference that all links connected
to these nodes are centroid connectors.

Arguments
centroids (np.ndarray): Array with centroid IDs. Mandatory type Int64, unique and posi-
tive

save_compressed_correspondence(path, mode_name, mode_id)
Save graph and nodes_to_indices to disk

save_to_disk(filename: str)→ None
Saves graph to disk

Arguments
filename (str): Path to file. Usual file extension is aeg

224 Chapter 3. API Reference

AequilibraE Documentation

set_blocked_centroid_flows(block_centroid_flows)→ None
Chooses whether we want to block paths to go through centroids or not.

Default value is True

Arguments
block_centroid_flows (bool): Blocking or not

set_graph(cost_field)→ None
Sets the field to be used for path computation

Arguments
cost_field (str): Field name. Must be numeric

set_skimming(skim_fields: list)→ None
Sets the list of skims to be computed

Skimming with A* may produce results that differ from traditional Dijkstra’s due to its use a heuristic.

Arguments
skim_fields (list): Fields must be numeric

3.7.2 aequilibrae.paths.TransitGraph

class aequilibrae.paths.TransitGraph(config: dict | None = None, od_node_mapping: DataFrame | None
= None, *args, **kwargs)

__init__(config: dict | None = None, od_node_mapping: DataFrame | None = None, *args, **kwargs)

Methods

__init__([config, od_node_mapping])

available_skims() Returns graph fields that are available to be set as
skims

create_compressed_link_network_mapping() Create two arrays providing a mapping of compressed
id to link id.

default_types(tp) Returns the default integer and float types used for
computation

exclude_links(links) Excludes a list of links from a graph by setting their
B node equal to their A node

load_from_disk(filename) Loads graph from disk
prepare_graph (centroids) Prepares the graph for a computation for a certain set

of centroids
save_compressed_correspondence(path, ...) Save graph and nodes_to_indices to disk
save_to_disk(filename) Saves graph to disk
set_blocked_centroid_flows(block_centroid_flows)Chooses whether we want to block paths to go

through centroids or not.
set_graph (cost_field) Sets the field to be used for path computation
set_skimming(skim_fields) Sets the list of skims to be computed

3.7. Paths 225

AequilibraE Documentation

available_skims()→ List[str]
Returns graph fields that are available to be set as skims

Returns
list (str): Field names

create_compressed_link_network_mapping()

Create two arrays providing a mapping of compressed id to link id.

Uses sparse compression. Index idx by the by compressed id and compressed id + 1, the network IDs are
then in the range idx[id]:idx[id + 1].

>>> idx, data = graph.compressed_link_network_mapping
>>> data[idx[id]:idx[id + 1]] # ==> Slice of network ID's corresponding to the␣
→˓compressed ID

Links not in the compressed graph are not contained within the data array.

Returns
idx (np.array): index array for data data (np.array): array of link ids

default_types(tp: str)
Returns the default integer and float types used for computation

Arguments
tp (str): data type. ‘int’ or ‘float’

exclude_links(links: list)→ None
Excludes a list of links from a graph by setting their B node equal to their A node

Arguments
links (list): List of link IDs to be excluded from the graph

load_from_disk(filename: str)→ None
Loads graph from disk

Arguments
filename (str): Path to file

prepare_graph(centroids: ndarray | None)→ None
Prepares the graph for a computation for a certain set of centroids

Under the hood, if sets all centroids to have IDs from 1 through n, which should correspond to the index of
the matrix being assigned.

This is what enables having any node IDs as centroids, and it relies on the inference that all links connected
to these nodes are centroid connectors.

Arguments
centroids (np.ndarray): Array with centroid IDs. Mandatory type Int64, unique and posi-
tive

save_compressed_correspondence(path, mode_name, mode_id)
Save graph and nodes_to_indices to disk

save_to_disk(filename: str)→ None
Saves graph to disk

Arguments
filename (str): Path to file. Usual file extension is aeg

226 Chapter 3. API Reference

AequilibraE Documentation

set_blocked_centroid_flows(block_centroid_flows)→ None
Chooses whether we want to block paths to go through centroids or not.

Default value is True

Arguments
block_centroid_flows (bool): Blocking or not

set_graph(cost_field)→ None
Sets the field to be used for path computation

Arguments
cost_field (str): Field name. Must be numeric

set_skimming(skim_fields: list)→ None
Sets the list of skims to be computed

Skimming with A* may produce results that differ from traditional Dijkstra’s due to its use a heuristic.

Arguments
skim_fields (list): Fields must be numeric

3.7.3 aequilibrae.paths.AssignmentResults

class aequilibrae.paths.AssignmentResults

Assignment result holder for a single TrafficClass with multiple user classes

__init__()

Methods

__init__()

get_graph_to_network_mapping()

get_load_results() Translates the assignment results from the graph for-
mat into the network format

get_sl_results()

prepare(graph, matrix) Prepares the object with dimensions corresponding to
the assignment matrix and graph objects

reset() Resets object to prepared and pre-computation state
save_to_disk([file_name, output]) Function to write to disk all outputs computed during

assignment.
set_cores(cores) Sets number of cores (threads) to be used in compu-

tation
total_flows() Totals all link flows for this class into a single link

load

prepare(graph: Graph, matrix: AequilibraeMatrix)→ None
Prepares the object with dimensions corresponding to the assignment matrix and graph objects

3.7. Paths 227

AequilibraE Documentation

Arguments
graph (Graph): Needs to have been set with number of centroids and list of skims (if any)

matrix (AequilibraeMatrix): Matrix properly set for computation with matrix.
computational_view(:obj:`list`)

reset()→ None
Resets object to prepared and pre-computation state

total_flows()→ None
Totals all link flows for this class into a single link load

Results are placed into total_link_loads class member

get_graph_to_network_mapping()

get_load_results()→ AequilibraeData
Translates the assignment results from the graph format into the network format

Returns
dataset (AequilibraeData): AequilibraE data with the traffic class assignment results

get_sl_results()→ AequilibraeData

save_to_disk(file_name=None, output='loads')→ None
Function to write to disk all outputs computed during assignment.

Deprecated since version 0.7.0.

Arguments
file_name (str): Name of the file, with extension. Valid extensions are: [‘aed’, ‘csv’, ‘sqlite’]

output (str, Optional): Type of output (‘loads’, ‘path_file’). Defaults to ‘loads’

set_cores(cores: int)→ None
Sets number of cores (threads) to be used in computation

Value of zero sets number of threads to all available in the system, while negative values indicate the number
of threads to be left out of the computational effort.

Resulting number of cores will be adjusted to a minimum of zero or the maximum available in the system
if the inputs result in values outside those limits

Arguments
cores (int): Number of cores to be used in computation

3.7.4 aequilibrae.paths.TransitAssignmentResults

class aequilibrae.paths.TransitAssignmentResults

Assignment result holder for a single Transit

__init__()

228 Chapter 3. API Reference

AequilibraE Documentation

Methods

__init__()

get_load_results() Translates the assignment results from the graph for-
mat into the network format

prepare(graph, matrix) Prepares the object with dimensions corresponding to
the assignment matrix and graph objects

reset() Resets object to prepared and pre-computation state
set_cores(cores) Sets number of cores (threads) to be used in compu-

tation

prepare(graph: TransitGraph, matrix: AequilibraeMatrix)→ None
Prepares the object with dimensions corresponding to the assignment matrix and graph objects

Arguments
graph (TransitGraph): Needs to have been set with number of centroids

matrix (AequilibraeMatrix): Matrix properly set for computation with matrix.
computational_view(:obj:`list`)

reset()→ None
Resets object to prepared and pre-computation state

get_load_results()→ AequilibraeData
Translates the assignment results from the graph format into the network format

Returns
dataset (AequilibraeData): AequilibraE data with the transit class assignment results

set_cores(cores: int)→ None
Sets number of cores (threads) to be used in computation

Value of zero sets number of threads to all available in the system, while negative values indicate the number
of threads to be left out of the computational effort.

Resulting number of cores will be adjusted to a minimum of zero or the maximum available in the system
if the inputs result in values outside those limits

Arguments
cores (int): Number of cores to be used in computation

3.7.5 aequilibrae.paths.SkimResults

class aequilibrae.paths.SkimResults

Network skimming result holder.

>>> from aequilibrae import Project
>>> from aequilibrae.paths.results import SkimResults

>>> proj = Project.from_path("/tmp/test_project")
>>> proj.network.build_graphs()

Mode c is car in this project
(continues on next page)

3.7. Paths 229

AequilibraE Documentation

(continued from previous page)

>>> car_graph = proj.network.graphs['c']

minimize travel time
>>> car_graph.set_graph('free_flow_time')

Skims travel time and distance
>>> car_graph.set_skimming(['free_flow_time', 'distance'])

>>> res = SkimResults()
>>> res.prepare(car_graph)

>>> res.skims.export('/tmp/test_project/matrix.aem')

__init__()

Methods

__init__()

prepare(graph) Prepares the object with dimensions corresponding to
the graph objects

prepare(graph: Graph)
Prepares the object with dimensions corresponding to the graph objects

Arguments
graph (Graph): Needs to have been set with number of centroids and list of skims (if any)

3.7.6 aequilibrae.paths.PathResults

class aequilibrae.paths.PathResults

Path computation result holder

>>> from aequilibrae import Project
>>> from aequilibrae.paths.results import PathResults

>>> proj = Project.from_path("/tmp/test_project")
>>> proj.network.build_graphs()

Mode c is car in this project
>>> car_graph = proj.network.graphs['c']

minimize distance
>>> car_graph.set_graph('distance')

If you want to compute skims
It does increase path computation time substantially
>>> car_graph.set_skimming(['distance', 'free_flow_time'])

(continues on next page)

230 Chapter 3. API Reference

AequilibraE Documentation

(continued from previous page)

>>> res = PathResults()
>>> res.prepare(car_graph)
>>> res.compute_path(1, 17)

res.milepost contains the milepost corresponding to each node along the path
res.path_nodes contains the sequence of nodes that form the path
res.path contains the sequence of links that form the path
res.path_link_directions contains the link directions corresponding to the above␣
→˓links
res.skims contain all skims requested when preparing the graph

Update all the outputs mentioned above for destination 9. Same origin: 1
>>> res.update_trace(9)

clears all computation results
>>> res.reset()

__init__()→ None

Methods

__init__()

compute_path (origin, destination[, ...]) Computes the path between two nodes in the network.
get_heuristics() Return the availiable heuristics.
prepare(graph) Prepares the object with dimensions corresponding to

the graph object
reset() Resets object to prepared and pre-computation state
set_heuristic(heuristic) Set the heuristics to be used in A*.
update_trace(destination) Updates the path's nodes, links, skims and mileposts

compute_path(origin: int, destination: int, early_exit: bool = False, a_star: bool = False, heuristic: str |
None = None)→ None

Computes the path between two nodes in the network.

A* heuristics are currently only valid distance cost fields.

Arguments
origin (int): Origin for the path

destination (int): Destination for the path

early_exit (bool): Stop constructing the shortest path tree once the destination is found.
Doing so may cause subsequent calls to update_trace to recompute the tree. Default is
False.

a_star (bool): Whether or not to use A* over Dijkstra’s algorithm. When True, early_exit
is always True. Default is False.

heuristic (str): Heuristic to use if a_star is enabled. Default is None.

prepare(graph: Graph)→ None
Prepares the object with dimensions corresponding to the graph object

3.7. Paths 231

AequilibraE Documentation

Arguments
graph (Graph): Needs to have been set with number of centroids and list of skims (if any)

reset()→ None
Resets object to prepared and pre-computation state

update_trace(destination: int)→ None
Updates the path’s nodes, links, skims and mileposts

If the previously computed path had early_exit enabled, update_trace will check if the destination has
already been found, if not the shortest path tree will be recomputed with the early_exit argument passed
on.

If the previously computed path had a_star enabled, update_trace always recompute the path.

Arguments
destination (int): ID of the node we are computing the path too

set_heuristic(heuristic: str)→ None
Set the heuristics to be used in A*. Must be one of get_heuristics().

Arguments
heuristic (str): Heuristic to use in A*.

get_heuristics()→ List[str]
Return the availiable heuristics.

3.7.7 aequilibrae.paths.VDF

class aequilibrae.paths.VDF

Volume-Delay function

>>> from aequilibrae.paths import VDF

>>> vdf = VDF()
>>> vdf.functions_available()
['bpr', 'bpr2', 'conical', 'inrets']

__init__()

Methods

__init__()

functions_available() returns a list of all functions available

functions_available()→ list
returns a list of all functions available

232 Chapter 3. API Reference

AequilibraE Documentation

3.7.8 aequilibrae.paths.TrafficClass

class aequilibrae.paths.TrafficClass(name: str, graph: Graph, matrix: AequilibraeMatrix)
Traffic class for equilibrium traffic assignment

>>> from aequilibrae import Project
>>> from aequilibrae.matrix import AequilibraeMatrix
>>> from aequilibrae.paths import TrafficClass

>>> project = Project.from_path("/tmp/test_project")
>>> project.network.build_graphs()

>>> graph = project.network.graphs['c'] # we grab the graph for cars
>>> graph.set_graph('free_flow_time') # let's say we want to minimize time
>>> graph.set_skimming(['free_flow_time', 'distance']) # And will skim time and␣
→˓distance
>>> graph.set_blocked_centroid_flows(True)

>>> proj_matrices = project.matrices

>>> demand = AequilibraeMatrix()
>>> demand = proj_matrices.get_matrix("demand_omx")
>>> demand.computational_view(['matrix'])

>>> tc = TrafficClass("car", graph, demand)
>>> tc.set_pce(1.3)

__init__(name: str, graph: Graph, matrix: AequilibraeMatrix)→ None
Instantiates the class

Arguments
name (str): UNIQUE class name.

graph (Graph): Class/mode-specific graph

matrix (AequilibraeMatrix): Class/mode-specific matrix. Supports multiple user classes

Methods

__init__(name, graph, matrix) Instantiates the class
set_fixed_cost(field_name[, multiplier]) Sets value of time
set_pce(pce) Sets Passenger Car equivalent
set_select_links(links) Set the selected links.
set_vot(value_of_time) Sets value of time

3.7. Paths 233

AequilibraE Documentation

Attributes

info

set_pce(pce: float | int)→ None
Sets Passenger Car equivalent

Arguments
pce (Union[float, int]): PCE. Defaults to 1 if not set

set_fixed_cost(field_name: str, multiplier=1)
Sets value of time

Arguments
field_name (str): Name of the graph field with fixed costs for this class

multiplier (Union[float, int]): Multiplier for the fixed cost. Defaults to 1 if not set

set_vot(value_of_time: float)→ None
Sets value of time

Arguments
value_of_time (Union[float, int]): Value of time. Defaults to 1 if not set

set_select_links(links: Dict[str, List[Tuple[int, int]]])
Set the selected links. Checks if the links and directions are valid. Translates link_id and direction into
unique link id used in compact graph. Supply links=None to disable select link analysis.

Arguments
links (Union[None, Dict[str, List[Tuple[int, int]]]]): name of link set and
Link IDs and directions to be used in select link analysis

property info: dict

3.7.9 aequilibrae.paths.TransitClass

class aequilibrae.paths.TransitClass(name: str, graph: TransitGraph, matrix: AequilibraeMatrix,
matrix_core: str | None = None)

__init__(name: str, graph: TransitGraph, matrix: AequilibraeMatrix, matrix_core: str | None = None)
Instantiates the class

Arguments
name (str): UNIQUE class name.

graph (Graph): Class/mode-specific graph

matrix (AequilibraeMatrix): Class/mode-specific matrix. Supports multiple user classes

234 Chapter 3. API Reference

AequilibraE Documentation

Methods

__init__(name, graph, matrix[, matrix_core]) Instantiates the class
set_demand_matrix_core(core) Set the matrix core to use for demand.

Attributes

info

property info: dict

set_demand_matrix_core(core: str)
Set the matrix core to use for demand.

Arguments
core (str):

3.7.10 aequilibrae.paths.TrafficAssignment

class aequilibrae.paths.TrafficAssignment(project=None)
Traffic assignment class.

For a comprehensive example on use, see the Use examples page.

>>> from aequilibrae import Project
>>> from aequilibrae.matrix import AequilibraeMatrix
>>> from aequilibrae.paths import TrafficAssignment, TrafficClass

>>> project = Project.from_path("/tmp/test_project")
>>> project.network.build_graphs()

>>> graph = project.network.graphs['c'] # we grab the graph for cars
>>> graph.set_graph('free_flow_time') # let's say we want to minimize time
>>> graph.set_skimming(['free_flow_time', 'distance']) # And will skim time and␣
→˓distance
>>> graph.set_blocked_centroid_flows(True)

>>> proj_matrices = project.matrices

>>> demand = AequilibraeMatrix()
>>> demand = proj_matrices.get_matrix("demand_omx")

We will only assign one user class stored as 'matrix' inside the OMX file
>>> demand.computational_view(['matrix'])

Creates the assignment class
>>> assigclass = TrafficClass("car", graph, demand)

(continues on next page)

3.7. Paths 235

AequilibraE Documentation

(continued from previous page)

>>> assig = TrafficAssignment()

The first thing to do is to add at list of traffic classes to be assigned
>>> assig.set_classes([assigclass])

Then we set the volume delay function
>>> assig.set_vdf("BPR") # This is not case-sensitive

And its parameters
>>> assig.set_vdf_parameters({"alpha": "b", "beta": "power"})

The capacity and free flow travel times as they exist in the graph
>>> assig.set_capacity_field("capacity")
>>> assig.set_time_field("free_flow_time")

And the algorithm we want to use to assign
>>> assig.set_algorithm('bfw')

Since we haven't checked the parameters file, let's make sure convergence␣
→˓criteria is good
>>> assig.max_iter = 1000
>>> assig.rgap_target = 0.00001

>>> assig.execute() # we then execute the assignment

If you want, it is possible to access the convergence report
>>> import pandas as pd
>>> convergence_report = pd.DataFrame(assig.assignment.convergence_report)

Assignment results can be viewed as a Pandas DataFrame
>>> results_df = assig.results()

Information on the assignment setup can be recovered with
>>> info = assig.info()

Or save it directly to the results database
>>> results = assig.save_results(table_name='base_year_assignment')

skims are here
>>> avg_skims = assigclass.results.skims # blended ones
>>> last_skims = assigclass._aon_results.skims # those for the last iteration

__init__(project=None)→ None

236 Chapter 3. API Reference

AequilibraE Documentation

Methods

__init__([project])

add_class(traffic_class) Adds a traffic class to the assignment
add_preload(preload[, name]) Given a dataframe of 'link_id', 'direction' and

'preload', merge into current preloads dataframe.
algorithms_available() Returns all algorithms available for use
execute([log_specification]) Processes assignment
info() Returns information for the traffic assignment proce-

dure
log_specification()

report() Returns the assignment convergence report
results() Prepares the assignment results as a Pandas

DataFrame
save_results(table_name[, keep_zero_flows, ...]) Saves the assignment results to re-

sults_database.sqlite
save_select_link_flows(table_name[, project]) Saves the select link link flows for all classes into the

results database.
save_select_link_matrices(file_name) Saves the Select Link matrices for each TrafficClass

in the current TrafficAssignment class
save_select_link_results(name) Saves both the Select Link matrices and flow results

at the same time, using the same name.
save_skims(matrix_name[, which_ones, ...]) Saves the skims (if any) to the skim folder and regis-

ters in the matrix list
select_link_flows() Returns a dataframe of the select link flows for each

class
set_algorithm(algorithm) Chooses the assignment algorithm.
set_capacity_field(capacity_field) Sets the graph field that contains link capacity for the

assignment period -> e.g. 'capacity1h'.
set_classes(classes) Sets Traffic classes to be assigned
set_cores(cores) Allows one to set the number of cores to be used AF-

TER traffic classes have been added
set_path_file_format(file_format) Specify path saving format.
set_save_path_files(save_it) Turn path saving on or off.
set_time_field(time_field) Sets the graph field that contains free flow travel time

-> e.g. 'fftime'.
set_vdf (vdf_function) Sets the Volume-delay function to be used
set_vdf_parameters(par) Sets the parameters for the Volume-delay function.

Attributes

all_algorithms

bpr_parameters

bpr_parameters = ['alpha', 'beta']

3.7. Paths 237

AequilibraE Documentation

all_algorithms = ['all-or-nothing', 'msa', 'frank-wolfe', 'fw', 'cfw', 'bfw']

set_vdf(vdf_function: str)→ None
Sets the Volume-delay function to be used

Arguments
vdf_function (str): Name of the VDF to be used

set_classes(classes: List[TrafficClass])→ None
Sets Traffic classes to be assigned

Arguments
classes (List[TrafficClass]): List of Traffic classes for assignment

add_class(traffic_class: TrafficClass)→ None
Adds a traffic class to the assignment

Arguments
traffic_class (TrafficClass): Traffic class

set_algorithm(algorithm: str)
Chooses the assignment algorithm. e.g. ‘frank-wolfe’, ‘bfw’, ‘msa’

‘fw’ is also accepted as an alternative to ‘frank-wolfe’

Arguments
algorithm (str): Algorithm to be used

set_vdf_parameters(par: dict)→ None
Sets the parameters for the Volume-delay function.

Parameter values can be scalars (same values for the entire network) or network field names (link-specific
values) - Examples: {‘alpha’: 0.15, ‘beta’: 4.0} or {‘alpha’: ‘alpha’, ‘beta’: ‘beta’}

Arguments
par (dict): Dictionary with all parameters for the chosen VDF

set_cores(cores: int)→ None
Allows one to set the number of cores to be used AFTER traffic classes have been added

Inherited from AssignmentResultsBase

Arguments
cores (int): Number of CPU cores to use

set_save_path_files(save_it: bool)→ None
Turn path saving on or off.

Arguments
save_it (bool): Boolean to indicate whether paths should be saved

set_path_file_format(file_format: str)→ None
Specify path saving format. Either parquet or feather.

Arguments
file_format (str): Name of file format to use for path files

set_time_field(time_field: str)→ None
Sets the graph field that contains free flow travel time -> e.g. ‘fftime’

Arguments
time_field (str): Field name

238 Chapter 3. API Reference

AequilibraE Documentation

set_capacity_field(capacity_field: str)→ None
Sets the graph field that contains link capacity for the assignment period -> e.g. ‘capacity1h’

Arguments
capacity_field (str): Field name

add_preload(preload: DataFrame, name: str | None = None)→ None
Given a dataframe of ‘link_id’, ‘direction’ and ‘preload’, merge into current preloads dataframe.

Arguments
preload (pd.DataFrame): dataframe mapping ‘link_id’ & ‘direction’ to ‘preload’ name
(str): Name for particular preload (optional - default name will be chosen if not specified)

log_specification()

save_results(table_name: str, keep_zero_flows=True, project=None)→ None
Saves the assignment results to results_database.sqlite

Method fails if table exists

Arguments
table_name (str): Name of the table to hold this assignment result

keep_zero_flows (bool): Whether we should keep records for zero flows. Defaults to True

project (Project, Optional): Project we want to save the results to. Defaults to the active
project

results()→ DataFrame
Prepares the assignment results as a Pandas DataFrame

Returns
DataFrame (pd.DataFrame): Pandas DataFrame with all the assignment results indexed on
link_id

info()→ dict
Returns information for the traffic assignment procedure

Dictionary contains keys ‘Algorithm’, ‘Classes’, ‘Computer name’, ‘Procedure ID’, ‘Maximum iterations’
and ‘Target RGap’.

The classes key is also a dictionary with all the user classes per traffic class and their respective matrix
totals

Returns
info (dict): Dictionary with summary information

save_skims(matrix_name: str, which_ones='final', format='omx', project=None)→ None
Saves the skims (if any) to the skim folder and registers in the matrix list

Arguments
name (str): Name of the matrix record to hold this matrix (same name used for file name)

which_ones (str, Optional): {‘final’: Results of the final iteration, ‘blended’: Averaged
results for all iterations, ‘all’: Saves skims for both the final iteration and the blended ones}.
Default is ‘final’

format (str, Optional): File format (‘aem’ or ‘omx’). Default is ‘omx’

project (Project, Optional): Project we want to save the results to. Defaults to the active
project

3.7. Paths 239

AequilibraE Documentation

select_link_flows()→ Dict[str, DataFrame]
Returns a dataframe of the select link flows for each class

save_select_link_flows(table_name: str, project=None)→ None
Saves the select link link flows for all classes into the results database. Additionally, it exports the OD
matrices into OMX format.

Arguments
table_name (str): Name of the table being inserted to. Note the traffic class

project (Project, Optional): Project we want to save the results to. Defaults to the active
project

save_select_link_matrices(file_name: str)→ None
Saves the Select Link matrices for each TrafficClass in the current TrafficAssignment class

save_select_link_results(name: str)→ None
Saves both the Select Link matrices and flow results at the same time, using the same name.

Note

Note the Select Link matrices will have _SL_matrices.omx appended to the end for ease of identifica-
tion. e.g. save_select_link_results(“Car”) will result in the following names for the flows and matrices:
Select Link Flows: inserts the select link flows for each class into the database with the table name: Car
Select Link Matrices (only exports to OMX format): Car.omx

Arguments
name (str): name of the matrices

algorithms_available()→ list
Returns all algorithms available for use

Returns
list: List of string values to be used with set_algorithm

execute(log_specification=True)→ None
Processes assignment

report()→ DataFrame
Returns the assignment convergence report

Returns
DataFrame (pd.DataFrame): Convergence report

3.7.11 aequilibrae.paths.TransitAssignment

class aequilibrae.paths.TransitAssignment(*args, project=None, **kwargs)

__init__(*args, project=None, **kwargs)

240 Chapter 3. API Reference

AequilibraE Documentation

Methods

__init__(*args[, project])

add_class(transport_class) Adds a Transport class to the assignment
algorithms_available() Returns all algorithms available for use
execute([log_specification]) Processes assignment
info() Returns information for the transit assignment proce-

dure
log_specification()

report() Returns the assignment convergence report
results() Prepares the assignment results as a Pandas

DataFrame
save_results(table_name[, keep_zero_flows, ...]) Saves the assignment results to re-

sults_database.sqlite
set_algorithm(algorithm) Chooses the assignment algorithm.
set_classes(classes) Sets Transport classes to be assigned
set_cores(cores) Allows one to set the number of cores to be used AF-

TER transit classes have been added
set_frequency_field(frequency_field) Sets the graph field that contains the frequency -> e.g.

'freq'.
set_time_field(time_field) Sets the graph field that contains free flow travel time

-> e.g. 'trav_time'.

Attributes

all_algorithms

all_algorithms = ['optimal-strategies', 'os']

set_algorithm(algorithm: str)
Chooses the assignment algorithm. Currently only ‘optimal-strategies’ is available.

‘os’ is also accepted as an alternative to ‘optimal-strategies’

Arguments
algorithm (str): Algorithm to be used

set_cores(cores: int)→ None
Allows one to set the number of cores to be used AFTER transit classes have been added

Inherited from AssignmentResultsBase

Arguments
cores (int): Number of CPU cores to use

info()→ dict
Returns information for the transit assignment procedure

Dictionary contains keys ‘Algorithm’, ‘Classes’, ‘Computer name’, ‘Procedure ID’.

3.7. Paths 241

AequilibraE Documentation

The classes key is also a dictionary with all the user classes per transit class and their respective matrix
totals

Returns
info (dict): Dictionary with summary information

log_specification()

save_results(table_name: str, keep_zero_flows=True, project=None)→ None
Saves the assignment results to results_database.sqlite

Method fails if table exists

Arguments
table_name (str): Name of the table to hold this assignment result

keep_zero_flows (bool): Whether we should keep records for zero flows. Defaults to True

project (Project, Optional): Project we want to save the results to. Defaults to the active
project

results()→ DataFrame
Prepares the assignment results as a Pandas DataFrame

Returns
DataFrame (pd.DataFrame): Pandas DataFrame with all the assignment results indexed on
link_id

set_time_field(time_field: str)→ None
Sets the graph field that contains free flow travel time -> e.g. ‘trav_time’

Arguments
time_field (str): Field name

set_frequency_field(frequency_field: str)→ None
Sets the graph field that contains the frequency -> e.g. ‘freq’

Arguments
frequency_field (str): Field name

add_class(transport_class: TransportClassBase)→ None
Adds a Transport class to the assignment

Arguments
transport_class (TransportClassBase): Transport class

algorithms_available()→ list
Returns all algorithms available for use

Returns
list: List of string values to be used with set_algorithm

execute(log_specification=True)→ None
Processes assignment

report()→ DataFrame
Returns the assignment convergence report

Returns
DataFrame (pd.DataFrame): Convergence report

242 Chapter 3. API Reference

AequilibraE Documentation

set_classes(classes: List[TransportClassBase])→ None
Sets Transport classes to be assigned

Arguments
classes (List[TransportClassBase]): List of TransportClass’s for assignment

3.7.12 aequilibrae.paths.HyperpathGenerating

class aequilibrae.paths.HyperpathGenerating(edges, tail='tail', head='head', trav_time='trav_time',
freq='freq', check_edges=False)

A class for hyperpath generation.

Arguments
edges (pandas.DataFrame): The edges of the graph.

tail (str): The column name for the tail of the edge (Optional, default is “tail”).

head (str): The column name for the head of the edge (Optional, default is “head”).

trav_time (str): The column name for the travel time of the edge (Optional, default is
“trav_time”).

freq (str): The column name for the frequency of the edge (Optional, default is “freq”).

check_edges (bool): If True, check the validity of the edges (Optional, default is False).

__init__(edges, tail='tail', head='head', trav_time='trav_time', freq='freq', check_edges=False)

Methods

__init__(edges[, tail, head, trav_time, ...])

assign(origin_column, destination_column, ...) Assigns demand to the edges of the graph.
info()

run(origin, destination, volume[, return_inf])

save_results(table_name[, keep_zero_flows, ...]) Saves the assignment results to re-
sults_database.sqlite

assign(origin_column, destination_column, demand_column, check_demand=False, threads=None)
Assigns demand to the edges of the graph.

Assumes the *_column arguments are provided as numpy arrays that form a COO sprase matrix.

Arguments
origin_column (np.ndarray): The column for the origin vertices (Optional, default is
“orig_vert_idx”).

destination_column (np.ndarray): The column or the destination vertices (Optional, de-
fault is “dest_vert_idx”).

demand_column (np.ndarray): The column for the demand values (Optional, default is
“demand”).

3.7. Paths 243

AequilibraE Documentation

check_demand (bool): If True, check the validity of the demand data (Optional, default is
False).

threads (int):The number of threads to use for computation (Optional, default is 0, using all
available threads).

info()→ dict

run(origin, destination, volume, return_inf=False)

save_results(table_name: str, keep_zero_flows=True, project=None)→ None
Saves the assignment results to results_database.sqlite

Method fails if table exists

Arguments
table_name (str): Name of the table to hold this assignment result

keep_zero_flows (bool): Whether we should keep records for zero flows. Defaults to True

project (Project, Optional): Project we want to save the results to. Defaults to the active
project

3.7.13 aequilibrae.paths.OptimalStrategies

class aequilibrae.paths.OptimalStrategies(assig_spec)

__init__(assig_spec)

Methods

__init__(assig_spec)

execute()

execute()

3.8 Transit

Transit

TransitGraphBuilder Graph builder for the transit assignment Spiess & Florian
algorithm.

244 Chapter 3. API Reference

AequilibraE Documentation

3.8.1 aequilibrae.transit.Transit

class aequilibrae.transit.Transit(project)

__init__(project)

Arguments
project (Project, Optional): The Project to connect to. By default, uses the currently active
project

Methods

__init__(project)

build_pt_preload(start, end[, inclusion_cond]) Builds a preload vector for the transit network over
the specified time period

create_graph (**kwargs)

create_transit_database() Creates the public transport database
load([period_ids])

new_gtfs_builder(agency, file_path[, day, ...]) Returns a GTFSRouteSystemBuilder object com-
patible with the project

save_graphs([period_ids])

Attributes

default_capacities

default_pces

graphs

pt_con

default_capacities = {'other': [30, 60], 0: [150, 300], 1: [280, 560], 11: [30,
60], 12: [50, 100], 2: [700, 700], 3: [30, 60], 4: [400, 800], 5: [20, 40]}

default_pces = {'other': 2.0, 0: 5.0, 1: 5.0, 11: 3.0, 3: 4.0, 5: 4.0}

graphs: Dict[str, TransitGraph] = {1:
<aequilibrae.transit.transit_graph_builder.TransitGraphBuilder object>}

pt_con: Connection

new_gtfs_builder(agency, file_path, day='', description='')→ GTFSRouteSystemBuilder
Returns a GTFSRouteSystemBuilder object compatible with the project

3.8. Transit 245

AequilibraE Documentation

Arguments
agency (str): Name for the agency this feed refers to (e.g. ‘CTA’)

file_path (str): Full path to the GTFS feed (e.g. ‘D:/project/my_gtfs_feed.zip’)

day (str, Optional): Service data contained in this field to be imported (e.g. ‘2019-10-04’)

description (str, Optional): Description for this feed (e.g. ‘CTA2019 fixed by John Doe’)

Returns
gtfs_feed (StaticGTFS): A GTFS feed that can be added to this network

create_transit_database()

Creates the public transport database

create_graph(**kwargs)→ TransitGraphBuilder

save_graphs(period_ids: List[int] | None = None)

load(period_ids: List[int] | None = None)

build_pt_preload(start: int, end: int, inclusion_cond: str = 'start')→ DataFrame
Builds a preload vector for the transit network over the specified time period

Arguments
start (int): The start of the period for which to check pt schedules (seconds from midnight)

end (int): The end of the period for which to check pt schedules, (seconds from midnight)

inclusion_cond (str): Specifies condition with which to include/exclude pt trips from the
preload.

Returns
preloads (pd.DataFrame): A dataframe of preload from transit vehicles that can be directly
used in an assignment

Minimal example: .. code-block:: python

>>> from aequilibrae import Project
>>> from aequilibrae.utils.create_example import create_example

>>> proj = create_example(str(tmp_path / "test_traffic_assignment"), from_model=
→˓"coquimbo")

>>> start = int(6.5 * 60 * 60) # 6.30am
>>> end = int(8.5 * 60 * 60) # 8.30 am

>>> preload = proj.transit.build_pt_preload(start, end)

246 Chapter 3. API Reference

AequilibraE Documentation

3.8.2 aequilibrae.transit.TransitGraphBuilder

class aequilibrae.transit.TransitGraphBuilder(public_transport_conn, period_id: int = 1, time_margin:
int = 0, projected_crs: str = 'EPSG:3857', num_threads:
int = -1, seed: int = 124, geometry_noise: bool = True,
noise_coef: float = 1e-05, with_inner_stop_transfers:
bool = False, with_outer_stop_transfers: bool = False,
with_walking_edges: bool = True,
distance_upper_bound: float = inf ,
blocking_centroid_flows: bool = True,
connector_method: str = 'nearest_neighbour',
max_connectors_per_zone: int = -1)

Graph builder for the transit assignment Spiess & Florian algorithm.

Arguments
public_transport_conn (sqlite3.Connection): Connection to the public_transport.
sqlite database.

period_id (int): Period id for the period to be used. Preferred over start and end.

time_margin (int): Time margin, extends the start and end times by time_margin ([start,
end] becomes [start - time_margin, end + time_margin]), in order to include more trips
when computing mean values. Defaults to 0.

projected_crs (str): Projected CRS of the network, intended for more accurate distance calcu-
lations. Defaults to "EPSG:3857", Spherical Mercator.

num_threads (int): Number of threads to be used where possible. Defaults to -1, using all
available threads.

seed (int): Seed for self.rng. Defaults to 124.

geometry_noise (bool): Whether to use noise in geometry creation, in order to avoid colocated
nodes. Defaults to True.

noise_coef (float): Scaling factor of the noise. Defaults to 1.0e-5.

with_inner_stop_transfers (bool): Whether to create transfer edges within parent stations. De-
faults to False.

with_outer_stop_transfers (bool): Whether to create transfer edges between parent stations.
Defaults to False.

with_walking_edges (bool): Whether to create walking edges between distinct stops of each
station. Defaults to True.

distance_upper_bound (float): Upper bound on connector distance. Defaults to np.inf.

blocking_centroid_flows (bool): Whether to block flow through centroids. Defaults to True.

max_connectors_per_zone (int): Maximum connectors per zone. Defaults to -1 for unlimited.

__init__(public_transport_conn, period_id: int = 1, time_margin: int = 0, projected_crs: str =
'EPSG:3857', num_threads: int = -1, seed: int = 124, geometry_noise: bool = True, noise_coef:
float = 1e-05, with_inner_stop_transfers: bool = False, with_outer_stop_transfers: bool = False,
with_walking_edges: bool = True, distance_upper_bound: float = inf , blocking_centroid_flows:
bool = True, connector_method: str = 'nearest_neighbour', max_connectors_per_zone: int = -1)

3.8. Transit 247

AequilibraE Documentation

Methods

__init__(public_transport_conn[, period_id, ...])

add_zones(zones[, from_crs]) Add zones as ODs.
convert_demand_matrix_from_zone_to_node_ids(...)Convert a sparse demand matrix from zone_id's to

the corresponding node_id's.
create_additional_db_fields() Create the additional required entries in the tables.
create_graph () Create the SF transit graph (vertices and edges).
create_line_geometry([method, graph]) Create the LineString for each edge.
create_od_node_mapping() Build a dataframe mapping the centroid node ids with

to transport assignment zone ids.
from_db(public_transport_conn, period_id, ...) Create a SF graph instance from an existing database

save.
save([robust]) Save the current graph to the public transport

database.
save_config()

save_edges([recreate_line_geometry]) Save the contents of self.edges to the public transport
database.

save_vertices([robust]) Write the vertices DataFrame to the public transport
database.

to_transit_graph () Create an AequilibraE (TransitGraph) object from
an SF graph builder.

Attributes

config

add_zones(zones, from_crs: str | None = None)
Add zones as ODs.

Arguments
zones (pd.DataFrame): DataFrame containing the zoning information. Columns must in-
clude zone_id and geometry.

from_crs (str): The CRS of the geometry column of zones. If not provided it’s assumed
that the geometry is already in self.projected_crs. If provided, the geometry will be
projected to self.projected_crs. Defaults to None.

create_od_node_mapping()

Build a dataframe mapping the centroid node ids with to transport assignment zone ids.

create_graph()

Create the SF transit graph (vertices and edges).

create_line_geometry(method='direct', graph='w')
Create the LineString for each edge.

The direct method creates a straight line between all points.

248 Chapter 3. API Reference

AequilibraE Documentation

The connect project match method uses the existing line geometry within the project to create more accurate
line strings. It creates a line string that matches the path between the shortest path between the project nodes
closest to either end of the access and egress connectors.

Project graphs must be built for the “connector project match” method.

Arguments
method (str): Must be either “direct” or “connector project match”. If method is “direct”,
graph argument is ignored.

graph (str): Must be a key within project.network.graphs.

create_additional_db_fields()

Create the additional required entries in the tables.

save_vertices(robust=True)
Write the vertices DataFrame to the public transport database.

Within the database nodes may not exist at the exact same point in space, provide robust=True to move
the nodes slightly.

Arguments
robust (bool): Whether to move stack nodes slightly before saving. Defaults to True.

save_edges(recreate_line_geometry=False)
Save the contents of self.edges to the public transport database.

If no geometry for the edges is present or recreate_line_geometry is True, direct lines will be created.

Arguments
recreate_line_geometry (bool): Whether to recreate the line strings for the edges as direct
lines. Defaults to False.

save_config()

save(robust=True)
Save the current graph to the public transport database.

Arguments
recreate_line_geometry (bool): Whether to recreate the line strings for the edges as direct
lines. Defaults to False.

to_transit_graph()→ TransitGraph
Create an AequilibraE (TransitGraph) object from an SF graph builder.

classmethod from_db(public_transport_conn, period_id: int, **kwargs)
Create a SF graph instance from an existing database save.

Assumes the database was constructed with the provided save methods. No checks are performed to see if
the provided arguments are compatible with the saved graph.

All arguments are forwarded to the constructor.

Arguments
public_transport_conn (sqlite3.Connection): Connection to the public_transport.
sqlite database.

convert_demand_matrix_from_zone_to_node_ids(demand_matrix, o_zone_col='origin_zone_id',
d_zone_col='destination_zone',
demand_col='demand')

Convert a sparse demand matrix from zone_id’s to the corresponding node_id’s.

3.8. Transit 249

AequilibraE Documentation

property config

250 Chapter 3. API Reference

APPENDIX

A

INSTALLATION

In this section we describe how to install AequilibraE.

Note

Although AequilibraE is under intense development, we try to avoid making breaking changes to the API. In any
case, you should check for new features and possible API changes often.

Note

The recommendations on this page are current as of December 2023.

A.1 Installation

1. Install Python 3.8, 3.9, 3.10, 3.11 or 3.12. We recommend Python 3.10 or 3.11

2. Install AequilibraE

pip install aequilibrae

A.1.1 Dependencies

All of AequilibraE’s dependencies are readily available from PyPI for all currently supported Python versions and major
platforms.

Spatialite

Although the presence of Spatialite is rather ubiquitous in the GIS ecosystem, it has to be installed separately from
Python or AequilibraE in any platform.

This blog post has a more comprehensive explanation of what is the setup you need to get Spatialite working, but that
is superfluous if all you want is to get it working.

251

www.python.org
https://www.pypi.org/
https://xl-optim.com/spatialite-and-python-in-2020/

AequilibraE Documentation

Windows

Note

On Windows ONLY, AequilibraE automatically verifies if you have SpatiaLite installed in your system and down-
loads it to your temporary folder if you do not.

Spatialite does not have great support on Python for Windows. For this reason, it is necessary to download Spatialite
for Windows and inform and load it to the Python SQLite driver every time you connect to the database.

One can download the appropriate version of the latest SpatiaLite release directly from its project page , or the cached
versions on AequilibraE’s website for 64-Bit Python

After unpacking the zip file into its own folder (say D:/spatialite), one can temporarily add the spatialite folder to
system path environment variable, as follows:

import os
os.environ['PATH'] = 'D:/spatialite' + ';' + os.environ['PATH']

For a permanent recording of the Spatialite location on your system, please refer to the blog post referenced above or
Windows-specific documentation.

Ubuntu Linux

On Ubuntu it is possible to install Spatialite by simply using apt-get

sudo apt update -y
sudo apt install -y libsqlite3-mod-spatialite
sudo apt install -y libspatialite-dev

MacOS

On MacOS one can use brew as per this answer on StackOverflow.

brew install libspatialite

A.2 Hardware requirements

AequilibraE’s requirements depend heavily on the size of the model you are using for computation. The most important
things to keep an eye on are:

• Number of zones on your model (size of the matrices you are dealing with)

• Number of matrices (vehicles classes (and user classes) you are dealing with)

• Number of links and nodes on your network (far less likely to create trouble)

Substantial testing has been done with large real-world models (up to 8,000 zones) and memory requirements did not
exceed the traditional 32Gb found in most modeling computers these days. In most cases 16Gb of RAM is enough
even for large models (5,000+ zones). Computationally intensive procedures such as skimming and traffic assignment

252 Appendix A. Installation

https://www.gaia-gis.it/gaia-sins/
https://github.com/AequilibraE/aequilibrae/releases/tag/V.0.7.5
https://stackoverflow.com/a/48370444/1480643

AequilibraE Documentation

have been parallelized, so AequilibraE can make use of as many CPUs as there are available in the system for such
procedures.

A.2. Hardware requirements 253

AequilibraE Documentation

254 Appendix A. Installation

APPENDIX

B

IPF PERFORMANCE

The use of iterative proportional fitting (IPF) is quite common on processes involving doubly-constraining matrices,
such as synthetic gravity models and fractional split models (aggregate destination-choice models).

As this is a commonly used algorithm, we have implemented it in Cython, where we can take full advantage of multi-
core CPUs. We have also implemented the ability of using both 32-bit and 64-bit floating-point seed matrices, which
has direct impact on cache use and consequently computational performance.

In this section, we compare the runtime of AequilibraE’s current implementation of IPF, with a general IPF algorithm
written in pure Python, available here.

The figure below compares AequilibraE’s IPF runtime with one core with the benchmark Python code. From the figure
below, we can notice that the runtimes were practically the same for the instances with 1,000 zones or less. As the
number of zones increases, AequilibraE demonstrated to be slightly faster than the benchmark python code, while
applying IPF to a 32-bit NumPy array (np.float32) was significantly faster. It’s worth mentioning that the user can set
up a threshold for AequilibraE’s IPF function, as well as use more than one core to speed up the fitting process.

255

https://github.com/joshchea/python-tdm/blob/master/scripts/CalcDistribution.py

AequilibraE Documentation

As IPF is an embarrassingly-parallel workload, it is more relevant to look at the performance of the AequilibraE im-
plementations, starting by comparing the implementation performance for inputs in 32 vs 64 bits using 32 threads.

256 Appendix B. IPF Performance

AequilibraE Documentation

The difference is staggering, with the 32-bit implementation being twice as fast as the 64-bit one for large matrices.
It is also worth noting that differences in results between the outputs between these two versions are incredibly small
(RMSE < 1.1e-10), and therefore unlikely to be relevant in most applications.

We can also look at performance gain across matrix sizes and number of cores, and it becomes clear that the 32-bit
version scales significantly better than its 64-bit counterpart, showing significant performance gains up to 16 threads,
while the latter stops showing much improvement beyond 8 threads, likely due to limitations on cache size.

257

AequilibraE Documentation

In conclusion, AequilibraE’s IPF implementation is over 11 times faster than its pure Python counterpart for large

258 Appendix B. IPF Performance

AequilibraE Documentation

matrices on a workstation, largely due to the use of Cython and multi-threading, but also due to the use of a 32-bit
version of the algorithm.

These tests were run on a Threadripper 3970x (released in 2019) workstation with 32 cores (64 threads) @ 3.7 GHz
and 256 Gb of RAM. The code is provided below for reference.

259

AequilibraE Documentation

260 Appendix B. IPF Performance

APPENDIX

C

TRAFFIC ASSIGNMENT

Similar to other complex algorithms that handle a large amount of data through complex computations, traffic assign-
ment procedures can always be subject to at least one very reasonable question: Are the results right?

For this reason, we have used all equilibrium traffic assignment algorithms available in AequilibraE to solve standard
instances used in academia for comparing algorithm results. Instances can be downloaded here.

All tests were performed with the AequilibraE version 1.1.0.

C.1 Validation

As shown below, the results produced by AequilibraE are within expected, although some differences have been found,
particularly for Winnipeg. We suspect that there are issues with the reference results and welcome further investigations.

Chicago

Network stats

• Links: 39,018

• Nodes: 12,982

• Zones: 1,790

Bi-conjugate Frank-Wolfe

261

https://github.com/bstabler/TransportationNetworks/

AequilibraE Documentation

Conjugate Frank-Wolfe

Frank-Wolfe

262 Appendix C. Traffic Assignment

AequilibraE Documentation

MSA

Barcelona

Network stats

• Links: 2,522

• Nodes: 1,020

• Zones: 110

C.1. Validation 263

AequilibraE Documentation

Bi-conjugate Frank-Wolfe

Conjugate Frank-Wolfe

Frank-Wolfe

264 Appendix C. Traffic Assignment

AequilibraE Documentation

MSA

Winnipeg

Network stats

• Links: 914

• Nodes: 416

• Zones: 38

C.1. Validation 265

AequilibraE Documentation

Bi-conjugate Frank-Wolfe

Conjugate Frank-Wolfe

Frank-Wolfe

266 Appendix C. Traffic Assignment

AequilibraE Documentation

MSA

Anaheim

Network stats

• Links: 914

• Nodes: 416

• Zones: 38

C.1. Validation 267

AequilibraE Documentation

Bi-conjugate Frank-Wolfe

Conjugate Frank-Wolfe

Frank-Wolfe

268 Appendix C. Traffic Assignment

AequilibraE Documentation

MSA

Sioux Falls

Network stats

• Links: 76

• Nodes: 24

• Zones: 24

C.1. Validation 269

AequilibraE Documentation

Bi-conjugate Frank-Wolfe

Conjugate Frank-Wolfe

Frank-Wolfe

270 Appendix C. Traffic Assignment

AequilibraE Documentation

MSA

C.1. Validation 271

AequilibraE Documentation

C.2 Convergence Study

Besides validating the final results from the algorithms, we have also compared how well they converge for the largest
instance we have tested (Chicago Regional), as that instance has a comparable size to real-world models.

Chicago

Barcelona

272 Appendix C. Traffic Assignment

AequilibraE Documentation

Winnipeg

C.2. Convergence Study 273

AequilibraE Documentation

Anaheim

274 Appendix C. Traffic Assignment

AequilibraE Documentation

Sioux-Falls

C.2. Convergence Study 275

AequilibraE Documentation

Not surprisingly, one can see that Frank-Wolfe far outperforms the Method of Successive Averages for a number of
iterations larger than 25 in the case of Chicago, and is capable of reaching 1.0e-04 just after 800 iterations, while MSA
is still at 3.5e-4 even after 1,000 iterations for that same case.

The actual show, however, is left for the Bi-conjugate Frank-Wolfe implementation, which delivers a relative gap of
under 1.0e-04 in under 200 iterations, and a relative gap of under 1.0e-05 in just over 700 iterations.

This convergence capability, allied to its computational performance described below suggest that AequilibraE is ready
to be used in large real-world applications.

C.3 Computational performance

All tests were run on a workstation equipped AMD Threadripper 3970X with 32 cores (64 threads) @ 3.7 GHz (memory
use is trivial for these instances).

On this machine, AequilibraE performed 1,000 iterations of Bi-conjugate Frank-Wolfe assignment on the Chicago
Network in a little over 4 minutes, or a little less than 0.43s per iteration.

Compared with AequilibraE previous versions, we can notice a reasonable decrease in processing time.

Note

The biggest opportunity for performance in AequilibraE right now it to apply network contraction hierarchies to
the building of the graph, but that is still a long-term goal

276 Appendix C. Traffic Assignment

AequilibraE Documentation

C.4 Want to run your own convergence study?

If you want to run the convergence study in your machine, with Chicago Regional instance or any other instance
presented here, check out the code block below! Please make sure you have already imported TNTP files into your
machine.

In the first part of the code, we’ll parse TNTP instances to a format AequilibraE can understand, and then we’ll perform
the assignment.

Imports
from pathlib import Path
from time import perf_counter

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score

from aequilibrae.matrix import AequilibraeMatrix
from aequilibrae.paths import Graph
from aequilibrae.paths import TrafficAssignment
from aequilibrae.paths.traffic_class import TrafficClass

Helper functions
def build_matrix(folder: Path, model_stub: str) -> AequilibraeMatrix:

omx_name = folder / f"{model_stub}_trips.omx"
if omx_name.exists():

mat = AequilibraeMatrix()
mat.load(omx_name)
mat.computational_view()
return mat

matfile = str(folder / f"{model_stub}_trips.tntp")
Creating the matrix
f = open(matfile, 'r')
all_rows = f.read()
blocks = all_rows.split('Origin')[1:]
matrix = {}
for k in range(len(blocks)):

orig = blocks[k].split('\n')
dests = orig[1:]
orig = int(orig[0])

d = [eval('{' + a.replace(';', ',').replace(' ', '') + '}') for a in dests]
destinations = {}
for i in d:

destinations = {**destinations, **i}
matrix[orig] = destinations

zones = max(matrix.keys())
index = np.arange(zones) + 1
mat_data = np.zeros((zones, zones))

(continues on next page)

C.4. Want to run your own convergence study? 277

https://github.com/bstabler/TransportationNetworks

AequilibraE Documentation

(continued from previous page)

for i in range(zones):
for j in range(zones):

mat_data[i, j] = matrix[i + 1].get(j + 1, 0)

Let's save our matrix in AequilibraE Matrix format
mat = AequilibraeMatrix()
mat.create_empty(zones=zones, matrix_names=['matrix'], memory_only=True)
mat.matrix['matrix'][:, :] = mat_data[:, :]
mat.index[:] = index[:]
mat.computational_view(["matrix"])
mat.export(str(omx_name))
return mat

Now let's parse the network
def build_graph(folder: Path, model_stub: str, centroids: np.array) -> Graph:

net = pd.read_csv(folder / f"{model_stub}_net.tntp", skiprows=7, sep='\t')
cols = ['init_node', 'term_node', 'free_flow_time', 'capacity', "b", "power"]
if 'toll' in net.columns:

cols.append('toll')
network = net[cols]
network.columns = ['a_node', 'b_node', 'free_flow_time', 'capacity', "b", "power",

→˓"toll"]
network = network.assign(direction=1)
network["link_id"] = network.index + 1
network.free_flow_time = network.free_flow_time.astype(np.float64)

If you want to create an AequilibraE matrix for computation, then it follows
g = Graph()
g.cost = net['free_flow_time'].values
g.capacity = net['capacity'].values
g.free_flow_time = net['free_flow_time'].values

g.network = network
g.network.loc[(g.network.power < 1), "power"] = 1
g.network.loc[(g.network.free_flow_time == 0), "free_flow_time"] = 0.01
g.prepare_graph(centroids)
g.set_graph("free_flow_time")
g.set_skimming(["free_flow_time"])
g.set_blocked_centroid_flows(False)
return g

def known_results(folder: Path, model_stub: str) -> pd.DataFrame:
df = pd.read_csv(folder / f"{model_stub}_flow.tntp", sep='\t')
df.columns = ["a_node", "b_node", "TNTP Solution", "cost"]
return df

Let's run the assignment
def assign(g: Graph, mat: AequilibraeMatrix, algorithm: str):

assigclass = TrafficClass("car", g, mat)
if "toll" in g.network.columns:

assigclass.set_fixed_cost("toll")

(continues on next page)

278 Appendix C. Traffic Assignment

AequilibraE Documentation

(continued from previous page)

assig = TrafficAssignment()
assig.set_classes([assigclass])
assig.set_vdf("BPR")
assig.set_vdf_parameters({"alpha": "b", "beta": "power"})
assig.set_capacity_field("capacity")
assig.set_time_field("free_flow_time")
assig.max_iter = 1000
assig.rgap_target = 1e-10 # Nearly guarantees that convergence won't be reached
assig.set_algorithm(algorithm)
assig.execute()
return assig

We compare the results
def validate(assig: TrafficAssignment, known_flows: pd.DataFrame, algorithm: str,␣
→˓folder: Path, model_name):

modeled = g.network[["link_id", "a_node", "b_node"]].merge(assig.results().matrix_ab.
→˓reset_index(),

on="link_id").rename(
columns={"matrix_ab": "AequilibraE Solution"})

merged = known_flows.merge(modeled, on=["a_node", "b_node"])

Scatter plot
plt.figure(figsize=(10, 6))
sns.scatterplot(data=merged, x="TNTP Solution", y="AequilibraE Solution", s=30)

Linear regression
X = merged["TNTP Solution"].values.reshape(-1, 1)
y = merged["AequilibraE Solution"].values
reg = LinearRegression(fit_intercept=False).fit(X, y)
y_pred = reg.predict(X)
r_squared = r2_score(y, y_pred)

Plot regression line
plt.plot(merged["TNTP Solution"], y_pred, color='red', label='Linear regression')

Customize the plot
plt.title(f'Comparison of Known and AequilibraE Solutions - Algorithm: {algorithm}',␣

→˓fontsize=16)
plt.xlabel('Known Solution', fontsize=14)
plt.ylabel('AequilibraE Solution (1,000 iterations)', fontsize=14)

Display the equation and R-squared on the plot
equation_text = f'y = {reg.coef_[0]:.2f}x\nR-squared = {r_squared:.5f}'
plt.text(x=merged["TNTP Solution"].max() * 0.5, y=merged["AequilibraE Solution"].

→˓max() * 0.85, s=equation_text,
fontsize=12)

plt.legend()
plt.savefig(folder / f"{model_name}_{algorithm}-1000_iter.png", dpi=300)
plt.close()

def assign_and_validate(g: Graph, mat: AequilibraeMatrix, folder: Path, model_stub: str):

(continues on next page)

C.4. Want to run your own convergence study? 279

AequilibraE Documentation

(continued from previous page)

known_flows = known_results(folder, model_stub)
We run the traffic assignment
conv = None
for algorithm in ["bfw", "cfw", "fw", "msa"]:

t = -perf_counter()
assig = assign(g, mat, algorithm)
t += perf_counter()
print(f"{model_stub},{algorithm},{t:0.4f}")

res = assig.report()[["iteration", "rgap"]].rename(columns={"rgap": algorithm})
validate(assig, known_flows, algorithm, folder, model_stub)

conv = res if conv is None else conv.merge(res, on="iteration")
df = conv.replace(np.inf, 1).set_index("iteration")
convergence_chart(df, data_folder, model_stub)
df.to_csv(folder / f"{model_stub}_convergence.csv")

def convergence_chart(df: pd.DataFrame, folder: Path, model_name):
import matplotlib.pyplot as plt

plt.cla()
df = df.loc[15:, :]
for column in df.columns:

plt.plot(df.index, df[column], label=column)
Customize the plot
plt.title('Convergence Comparison')
plt.xlabel('Iterations')
plt.ylabel('RGap')
plt.yscale("log")
plt.legend(title='Columns')
plt.savefig(folder / f"convergence_comparison_{model_name}.png", dpi=300)

models = {"chicago": [Path(r'D:\src\TransportationNetworks\chicago-regional'),
→˓"ChicagoRegional"],

"sioux_falls": [Path(r'D:\src\TransportationNetworks\SiouxFalls'), "SiouxFalls"],
"anaheim": [Path(r'D:\src\TransportationNetworks\Anaheim'), "Anaheim"],
"winnipeg": [Path(r'D:\src\TransportationNetworks\Winnipeg'), "Winnipeg"],
"barcelona": [Path(r'D:\src\TransportationNetworks\Barcelona'), "Barcelona"],

}

convergence = {}
for model_name, (data_folder, model_stub) in models.items():

print(model_name)
mat = build_matrix(data_folder, model_stub)
g = build_graph(data_folder, model_stub, mat.index)
assign_and_validate(g, mat, data_folder, model_stub)

280 Appendix C. Traffic Assignment

APPENDIX

D

IMPORTING FROM OPEN STREET MAPS

Please review the information Open Streeet Maps

Note

ALL links that cannot be imported due to errors in the SQL insert statements are written to the log file
with error message AND the SQL statement itself, and therefore errors in import can be analyzed for re-
downloading or fixed by re-running the failed SQL statements after manual fixing

D.1 Python limitations

As it happens in other cases, Python’s usual implementation of SQLite is incomplete, and does not include R-Tree, a
key extension used by Spatialite for GIS operations.

For this reason, AequilibraE’s default option when importing a network from OSM is to NOT create spatial indices,
which renders the network consistency triggers useless.

If you are using a vanilla Python installation (your case if you are not sure), you can import the network without creating
indices, as shown below.

from aequilibrae.project import Project

p = Project()
p.new('path/to/project/new/folder')
p.network.create_from_osm(place_name='my favorite place')
p.conn.close()

And then manually add the spatial index on QGIS by adding both links and nodes layers to the canvas, and selecting
properties and clicking on create spatial index for each layer at a time. This action automatically saves the spatial
indices to the sqlite database.

281

AequilibraE Documentation

If you are an expert user and made sure your Python installation was compiled against a complete SQLite set of exten-
sions, then go ahead an import the network with the option for creating such indices.

from aequilibrae.project import Project

p = Project()
p.new('path/to/project/new/folder/')
p.network.create_from_osm(place_name='my favorite place', spatial_index=True)
p.conn.close()

If you want to learn a little more about this topic, you can access this blog post or check out the SQLite page on R-Tree.

If you want to take a stab at solving your SQLite/SpatiaLite problem permanently, take a look at this other blog post.

Please also note that the network consistency triggers will NOT work before spatial indices have been created and/or
if the editing is being done on a platform that does not support both RTree and Spatialite.

282 Appendix D. Importing from Open Street Maps

https://pythongisandstuff.wordpress.com/2015/11/11/python-and-spatialite-32-bit-on-64-bit-windows/
https://www.sqlite.org/rtree.html
https://www.xl-optim.com/spatialite-and-python-in-2020/

APPENDIX

E

IMPORTING FROM FILES IN GMNS FORMAT

Before importing a network from a source in GMNS format, it is imperative to know in which spatial reference its
geometries (links and nodes) were created. If the SRID is different than 4326, it must be passed as an input using the
argument ‘srid’.

As of July 2022, it is possible to import the following files from a GMNS source:

• link table;

• node table;

• use_group table;

• geometry table.

You can find the specification for all these tables in the GMNS documentation, here.

283

_auto_examples/plot_import_from_gmns.html
https://github.com/zephyr-data-specs/GMNS/tree/develop/docs/spec

AequilibraE Documentation

By default, the method create_from_gmns() read all required and optional fields specified in the GMNS link and
node tables specification. If you need it to read any additional fields as well, you have to modify the AequilibraE
parameters as shown in the example.

When adding a new field to be read in the parameters.yml file, it is important to keep the “required” key set to False,
since you will always be adding a non-required field. Required fields for a specific table are only those defined in the
GMNS specification.

Note

In the AequilibraE nodes table, if a node is to be identified as a centroid, its ‘is_centroid’ field has to be set to
1. However, this is not part of the GMNS specification. Thus, if you want a node to be identified as a centroid
during the import process, in the GMNS node table you have to set the field ‘node_type’ equals to ‘centroid’.

284 Appendix E. Importing from files in GMNS format

APPENDIX

F

EXPORTING AEQUILIBRAE MODEL TO GMNS FORMAT

After loading an existing AequilibraE project, you can export it to GMNS format.

As of July 2022, it is possible to export an AequilibraE network to the following tables in GMNS format:

• link table

• node table

• use_definition table

This list does not include the optional use_group table, which is an optional argument of the create_from_gmns()
function, because mode groups are not used in the AequilibraE modes table.

In addition to all GMNS required fields for each of the three exported tables, some other fields are also added as riminder
of where the features came from when looking back at the AequilibraE project.

285

_auto_examples/plot_export_to_gmns.html

AequilibraE Documentation

Note

When a node is identified as a centroid in the AequilibraE nodes table, this information is transmitted to the
GMNS node table by means of the field ‘node_type’, which is set to ‘centroid’ in this case. The ‘node_type’
field is an optinal field listed in the GMNS node table specification.

You can find the GMNS specification here.

286 Appendix F. Exporting AequilibraE model to GMNS format

https://github.com/zephyr-data-specs/GMNS/tree/develop/docs/spec

PYTHON MODULE INDEX

a
aequilibrae, 177

287

AequilibraE Documentation

288 Python Module Index

INDEX

Symbols
__init__() (aequilibrae.Parameters method), 206
__init__() (aequilibrae.distribution.GravityApplication

method), 210
__init__() (aequilibrae.distribution.GravityCalibration

method), 212
__init__() (aequilibrae.distribution.Ipf method), 208
__init__() (aequilibrae.distribution.SyntheticGravityModel

method), 213
__init__() (aequilibrae.matrix.AequilibraeData

method), 213
__init__() (aequilibrae.matrix.AequilibraeMatrix

method), 215
__init__() (aequilibrae.paths.AssignmentResults

method), 227
__init__() (aequilibrae.paths.Graph method), 223
__init__() (aequilibrae.paths.HyperpathGenerating

method), 243
__init__() (aequilibrae.paths.OptimalStrategies

method), 244
__init__() (aequilibrae.paths.PathResults method),

231
__init__() (aequilibrae.paths.SkimResults method),

230
__init__() (aequilibrae.paths.TrafficAssignment

method), 236
__init__() (aequilibrae.paths.TrafficClass method),

233
__init__() (aequilibrae.paths.TransitAssignment

method), 240
__init__() (aequilibrae.paths.TransitAssignmentResults

method), 228
__init__() (aequilibrae.paths.TransitClass method),

234
__init__() (aequilibrae.paths.TransitGraph method),

225
__init__() (aequilibrae.paths.VDF method), 232
__init__() (aequilibrae.project.About method), 179
__init__() (aequilibrae.project.FieldEditor method),

181
__init__() (aequilibrae.project.Log method), 182
__init__() (aequilibrae.project.Matrices method), 182

__init__() (aequilibrae.project.Network method), 184
__init__() (aequilibrae.project.Project method), 177
__init__() (aequilibrae.project.Zone method), 190
__init__() (aequilibrae.project.Zoning method), 188
__init__() (aequilibrae.project.network.Link method),

202
__init__() (aequilibrae.project.network.LinkType

method), 201
__init__() (aequilibrae.project.network.LinkTypes

method), 194
__init__() (aequilibrae.project.network.Links method),

195
__init__() (aequilibrae.project.network.Mode

method), 200
__init__() (aequilibrae.project.network.Modes

method), 192
__init__() (aequilibrae.project.network.Node method),

203
__init__() (aequilibrae.project.network.Nodes

method), 197
__init__() (aequilibrae.project.network.Period

method), 205
__init__() (aequilibrae.project.network.Periods

method), 198
__init__() (aequilibrae.transit.Transit method), 245
__init__() (aequilibrae.transit.TransitGraphBuilder

method), 247

A
About (class in aequilibrae.project), 179
activate() (aequilibrae.project.Project method), 179
add() (aequilibrae.project.FieldEditor method), 181
add() (aequilibrae.project.network.Modes method), 192
add_centroid() (aequilibrae.project.Zone method),

190
add_class() (aequilibrae.paths.TrafficAssignment

method), 238
add_class() (aequilibrae.paths.TransitAssignment

method), 242
add_info_field() (aequilibrae.project.About method),

180

289

AequilibraE Documentation

add_mode() (aequilibrae.project.network.Link method),
202

add_preload() (aequilibrae.paths.TrafficAssignment
method), 239

add_zones() (aequilibrae.transit.TransitGraphBuilder
method), 248

aequilibrae
module, 177

AequilibraeData (class in aequilibrae.matrix), 213
AequilibraeMatrix (class in aequilibrae.matrix), 215
algorithms_available() (aequili-

brae.paths.TrafficAssignment method), 240
algorithms_available() (aequili-

brae.paths.TransitAssignment method), 242
all_algorithms (aequilibrae.paths.TrafficAssignment

attribute), 237
all_algorithms (aequilibrae.paths.TransitAssignment

attribute), 241
all_fields() (aequilibrae.project.FieldEditor

method), 181
all_modes() (aequilibrae.project.network.Modes

method), 193
all_types() (aequilibrae.project.network.LinkTypes

method), 194
all_zones() (aequilibrae.project.Zoning method), 189
apply() (aequilibrae.distribution.GravityApplication

method), 211
assign() (aequilibrae.paths.HyperpathGenerating

method), 243
AssignmentResults (class in aequilibrae.paths), 227
available_skims() (aequilibrae.paths.Graph method),

224
available_skims() (aequilibrae.paths.TransitGraph

method), 225

B
bpr_parameters (aequilibrae.paths.TrafficAssignment

attribute), 237
build_graphs() (aequilibrae.project.Network method),

186
build_pt_preload() (aequilibrae.transit.Transit

method), 246

C
calibrate() (aequili-

brae.distribution.GravityCalibration method),
212

check_exists() (aequilibrae.project.Matrices
method), 183

check_file_indices() (aequilibrae.project.Project
method), 179

cleaning() (in module aequilibrae), 177
clear() (aequilibrae.project.Log method), 182

clear_database() (aequilibrae.project.Matrices
method), 183

close() (aequilibrae.matrix.AequilibraeMatrix method),
218

close() (aequilibrae.project.Project method), 178
columns() (aequilibrae.matrix.AequilibraeMatrix

method), 221
computational_view() (aequili-

brae.matrix.AequilibraeMatrix method),
219

compute_path() (aequilibrae.paths.PathResults
method), 231

config (aequilibrae.transit.TransitGraphBuilder prop-
erty), 249

connect() (aequilibrae.project.Project method), 179
connect_db() (aequilibrae.project.network.Link

method), 203
connect_db() (aequilibrae.project.network.LinkType

method), 201
connect_db() (aequilibrae.project.network.Node

method), 204
connect_db() (aequilibrae.project.network.Period

method), 205
connect_db() (aequilibrae.project.Zone method), 191
connect_mode() (aequilibrae.project.network.Node

method), 204
connect_mode() (aequilibrae.project.Zone method),

190
contents() (aequilibrae.project.Log method), 182
convert_demand_matrix_from_zone_to_node_ids()

(aequilibrae.transit.TransitGraphBuilder
method), 249

convex_hull() (aequilibrae.project.Network method),
187

copy() (aequilibrae.matrix.AequilibraeMatrix method),
220

copy_link() (aequilibrae.project.network.Links
method), 196

count_centroids() (aequilibrae.project.Network
method), 187

count_links() (aequilibrae.project.Network method),
187

count_nodes() (aequilibrae.project.Network method),
187

coverage() (aequilibrae.project.Zoning method), 188
create() (aequilibrae.project.About method), 180
create_additional_db_fields() (aequili-

brae.transit.TransitGraphBuilder method),
249

create_compressed_link_network_mapping() (ae-
quilibrae.paths.Graph method), 224

create_compressed_link_network_mapping() (ae-
quilibrae.paths.TransitGraph method), 226

create_empty() (aequilibrae.matrix.AequilibraeData

290 Index

AequilibraE Documentation

method), 213
create_empty() (aequilibrae.matrix.AequilibraeMatrix

method), 216
create_from_gmns() (aequilibrae.project.Network

method), 186
create_from_omx() (aequili-

brae.matrix.AequilibraeMatrix method),
217

create_from_osm() (aequilibrae.project.Network
method), 185

create_from_trip_list() (aequili-
brae.matrix.AequilibraeMatrix method),
218

create_graph() (aequilibrae.transit.Transit method),
246

create_graph() (aequili-
brae.transit.TransitGraphBuilder method),
248

create_line_geometry() (aequili-
brae.transit.TransitGraphBuilder method),
248

create_od_node_mapping() (aequili-
brae.transit.TransitGraphBuilder method),
248

create_transit_database() (aequili-
brae.transit.Transit method), 246

create_zoning_layer() (aequilibrae.project.Zoning
method), 188

D
data (aequilibrae.project.network.Links property), 196
data (aequilibrae.project.network.Nodes property), 198
data (aequilibrae.project.network.Periods property), 200
data (aequilibrae.project.Zoning property), 189
data_fields() (aequilibrae.project.network.Link

method), 203
data_fields() (aequilibrae.project.network.Node

method), 204
data_fields() (aequilibrae.project.network.Period

method), 205
deactivate() (aequilibrae.project.Project method),

179
default_capacities (aequilibrae.transit.Transit

attribute), 245
default_pces (aequilibrae.transit.Transit attribute),

245
default_period (aequilibrae.project.network.Periods

property), 200
default_types() (aequilibrae.paths.Graph method),

224
default_types() (aequilibrae.paths.TransitGraph

method), 226
delete() (aequilibrae.project.network.Link method),

202

delete() (aequilibrae.project.network.Links method),
196

delete() (aequilibrae.project.network.LinkType
method), 201

delete() (aequilibrae.project.network.LinkTypes
method), 194

delete() (aequilibrae.project.network.Modes method),
192

delete() (aequilibrae.project.Zone method), 190
delete_record() (aequilibrae.project.Matrices

method), 183
disconnect_mode() (aequilibrae.project.Zone

method), 191
drop_mode() (aequilibrae.project.network.Link

method), 203

E
empty() (aequilibrae.matrix.AequilibraeData class

method), 213
exclude_links() (aequilibrae.paths.Graph method),

224
exclude_links() (aequilibrae.paths.TransitGraph

method), 226
execute() (aequilibrae.paths.OptimalStrategies

method), 244
execute() (aequilibrae.paths.TrafficAssignment

method), 240
execute() (aequilibrae.paths.TransitAssignment

method), 242
export() (aequilibrae.matrix.AequilibraeData method),

214
export() (aequilibrae.matrix.AequilibraeMatrix

method), 218
export_to_gmns() (aequilibrae.project.Network

method), 186
extent() (aequilibrae.project.Network method), 187
extent() (aequilibrae.project.network.Links method),

196
extent() (aequilibrae.project.network.Nodes method),

198
extent() (aequilibrae.project.network.Periods method),

199
extent() (aequilibrae.project.Zoning method), 189

F
FieldEditor (class in aequilibrae.project), 181
fields (aequilibrae.project.network.Links property),

196
fields (aequilibrae.project.network.Modes property),

192
fields (aequilibrae.project.network.Nodes property),

198
fields (aequilibrae.project.network.Periods property),

200

Index 291

AequilibraE Documentation

fields (aequilibrae.project.Zoning property), 189
fields() (aequilibrae.project.network.LinkTypes

method), 194
file_default (aequilibrae.Parameters attribute), 207
fit() (aequilibrae.distribution.Ipf method), 208
from_db() (aequilibrae.transit.TransitGraphBuilder

class method), 249
from_path() (aequilibrae.project.Project class method),

178
functions_available() (aequilibrae.paths.VDF

method), 232

G
get() (aequilibrae.project.network.Links method), 195
get() (aequilibrae.project.network.LinkTypes method),

194
get() (aequilibrae.project.network.Modes method), 192
get() (aequilibrae.project.network.Nodes method), 197
get() (aequilibrae.project.network.Periods method), 199
get() (aequilibrae.project.Zoning method), 189
get_by_name() (aequilibrae.project.network.LinkTypes

method), 194
get_by_name() (aequilibrae.project.network.Modes

method), 193
get_closest_zone() (aequilibrae.project.Zoning

method), 189
get_graph_to_network_mapping() (aequili-

brae.paths.AssignmentResults method), 228
get_heuristics() (aequilibrae.paths.PathResults

method), 232
get_load_results() (aequili-

brae.paths.AssignmentResults method), 228
get_load_results() (aequili-

brae.paths.TransitAssignmentResults method),
229

get_matrix() (aequilibrae.matrix.AequilibraeMatrix
method), 217

get_matrix() (aequilibrae.project.Matrices method),
183

get_record() (aequilibrae.project.Matrices method),
183

get_sl_results() (aequili-
brae.paths.AssignmentResults method), 228

Graph (class in aequilibrae.paths), 223
graphs (aequilibrae.transit.Transit attribute), 245
GravityApplication (class in aequili-

brae.distribution), 209
GravityCalibration (class in aequili-

brae.distribution), 211

H
HyperpathGenerating (class in aequilibrae.paths), 243

I
info (aequilibrae.paths.TrafficClass property), 234
info (aequilibrae.paths.TransitClass property), 235
info() (aequilibrae.paths.HyperpathGenerating

method), 244
info() (aequilibrae.paths.TrafficAssignment method),

239
info() (aequilibrae.paths.TransitAssignment method),

241
installation, 251
Ipf (class in aequilibrae.distribution), 207
is_omx() (aequilibrae.matrix.AequilibraeMatrix

method), 219

L
Link (class in aequilibrae.project.network), 201
link_types (aequilibrae.project.Network attribute), 185
Links (class in aequilibrae.project.network), 195
LinkType (class in aequilibrae.project.network), 201
LinkTypes (class in aequilibrae.project.network), 193
list() (aequilibrae.project.Matrices method), 183
list_fields() (aequilibrae.project.About method),

180
list_modes() (aequilibrae.project.Network method),

185
load() (aequilibrae.distribution.SyntheticGravityModel

method), 213
load() (aequilibrae.matrix.AequilibraeData method),

214
load() (aequilibrae.matrix.AequilibraeMatrix method),

219
load() (aequilibrae.project.Project method), 178
load() (aequilibrae.transit.Transit method), 246
load_from_disk() (aequilibrae.paths.Graph method),

224
load_from_disk() (aequilibrae.paths.TransitGraph

method), 226
Log (class in aequilibrae.project), 182
log() (aequilibrae.project.Project method), 179
log_specification() (aequili-

brae.paths.TrafficAssignment method), 239
log_specification() (aequili-

brae.paths.TransitAssignment method), 242
lonlat (aequilibrae.project.network.Nodes property),

198

M
Matrices (class in aequilibrae.project), 182
Mode (class in aequilibrae.project.network), 200
Modes (class in aequilibrae.project.network), 191
module

aequilibrae, 177

292 Index

AequilibraE Documentation

N
nan_to_num() (aequilibrae.matrix.AequilibraeMatrix

method), 221
netsignal (aequilibrae.project.Network attribute), 185
Network (class in aequilibrae.project), 184
new() (aequilibrae.project.network.Links method), 196
new() (aequilibrae.project.network.LinkTypes method),

194
new() (aequilibrae.project.network.Modes method), 193
new() (aequilibrae.project.Project method), 178
new() (aequilibrae.project.Zoning method), 188
new_centroid() (aequilibrae.project.network.Nodes

method), 198
new_gtfs_builder() (aequilibrae.transit.Transit

method), 245
new_period() (aequilibrae.project.network.Periods

method), 199
new_record() (aequilibrae.project.Matrices method),

184
Node (class in aequilibrae.project.network), 203
Nodes (class in aequilibrae.project.network), 197

O
open() (aequilibrae.project.Project method), 178
OptimalStrategies (class in aequilibrae.paths), 244

P
parameters (aequilibrae.project.Project property), 179
Parameters (class in aequilibrae), 206
PathResults (class in aequilibrae.paths), 230
Period (class in aequilibrae.project.network), 205
Periods (class in aequilibrae.project.network), 198
prepare() (aequilibrae.paths.AssignmentResults

method), 227
prepare() (aequilibrae.paths.PathResults method), 231
prepare() (aequilibrae.paths.SkimResults method), 230
prepare() (aequilibrae.paths.TransitAssignmentResults

method), 229
prepare_graph() (aequilibrae.paths.Graph method),

224
prepare_graph() (aequilibrae.paths.TransitGraph

method), 226
Project (class in aequilibrae.project), 177
project_parameters (aequilibrae.project.Project

property), 179
protected_fields (aequilibrae.project.Network

attribute), 185
pt_con (aequilibrae.transit.Transit attribute), 245

R
random_name() (aequilibrae.matrix.AequilibraeData

static method), 215

random_name() (aequilibrae.matrix.AequilibraeMatrix
static method), 222

refresh() (aequilibrae.project.network.Links method),
196

refresh() (aequilibrae.project.network.Nodes method),
198

refresh() (aequilibrae.project.network.Periods
method), 199

refresh_fields() (aequilibrae.project.network.Links
method), 196

refresh_fields() (aequilibrae.project.network.Nodes
method), 198

refresh_fields() (aequili-
brae.project.network.Periods method), 199

refresh_geo_index() (aequilibrae.project.Zoning
method), 189

reload() (aequilibrae.project.Matrices method), 183
remove() (aequilibrae.project.FieldEditor method), 181
renumber() (aequilibrae.project.network.Node method),

204
renumber() (aequilibrae.project.network.Period

method), 205
report() (aequilibrae.paths.TrafficAssignment method),

240
report() (aequilibrae.paths.TransitAssignment

method), 242
req_link_flds (aequilibrae.project.Network attribute),

185
req_node_flds (aequilibrae.project.Network attribute),

185
reset() (aequilibrae.paths.AssignmentResults method),

228
reset() (aequilibrae.paths.PathResults method), 232
reset() (aequilibrae.paths.TransitAssignmentResults

method), 229
restore_default() (aequilibrae.Parameters method),

207
results() (aequilibrae.paths.TrafficAssignment

method), 239
results() (aequilibrae.paths.TransitAssignment

method), 242
rows() (aequilibrae.matrix.AequilibraeMatrix method),

220
run() (aequilibrae.paths.HyperpathGenerating method),

244

S
save() (aequilibrae.distribution.SyntheticGravityModel

method), 213
save() (aequilibrae.matrix.AequilibraeMatrix method),

216
save() (aequilibrae.project.FieldEditor method), 181
save() (aequilibrae.project.network.Link method), 202
save() (aequilibrae.project.network.Links method), 196

Index 293

AequilibraE Documentation

save() (aequilibrae.project.network.LinkType method),
201

save() (aequilibrae.project.network.LinkTypes method),
194

save() (aequilibrae.project.network.Mode method), 201
save() (aequilibrae.project.network.Node method), 204
save() (aequilibrae.project.network.Nodes method), 198
save() (aequilibrae.project.network.Period method),

205
save() (aequilibrae.project.network.Periods method),

200
save() (aequilibrae.project.Zone method), 190
save() (aequilibrae.project.Zoning method), 189
save() (aequilibrae.transit.TransitGraphBuilder

method), 249
save_compressed_correspondence() (aequili-

brae.paths.Graph method), 224
save_compressed_correspondence() (aequili-

brae.paths.TransitGraph method), 226
save_config() (aequili-

brae.transit.TransitGraphBuilder method),
249

save_edges() (aequilibrae.transit.TransitGraphBuilder
method), 249

save_graphs() (aequilibrae.transit.Transit method),
246

save_results() (aequili-
brae.paths.HyperpathGenerating method),
244

save_results() (aequilibrae.paths.TrafficAssignment
method), 239

save_results() (aequilibrae.paths.TransitAssignment
method), 242

save_select_link_flows() (aequili-
brae.paths.TrafficAssignment method), 240

save_select_link_matrices() (aequili-
brae.paths.TrafficAssignment method), 240

save_select_link_results() (aequili-
brae.paths.TrafficAssignment method), 240

save_skims() (aequilibrae.paths.TrafficAssignment
method), 239

save_to_disk() (aequilibrae.paths.AssignmentResults
method), 228

save_to_disk() (aequilibrae.paths.Graph method),
224

save_to_disk() (aequilibrae.paths.TransitGraph
method), 226

save_to_project() (aequili-
brae.distribution.GravityApplication method),
211

save_to_project() (aequilibrae.distribution.Ipf
method), 208

save_vertices() (aequili-
brae.transit.TransitGraphBuilder method),

249
select_link_flows() (aequili-

brae.paths.TrafficAssignment method), 239
set_algorithm() (aequilibrae.paths.TrafficAssignment

method), 238
set_algorithm() (aequili-

brae.paths.TransitAssignment method), 241
set_blocked_centroid_flows() (aequili-

brae.paths.Graph method), 224
set_blocked_centroid_flows() (aequili-

brae.paths.TransitGraph method), 226
set_capacity_field() (aequili-

brae.paths.TrafficAssignment method), 238
set_classes() (aequilibrae.paths.TrafficAssignment

method), 238
set_classes() (aequilibrae.paths.TransitAssignment

method), 242
set_cores() (aequilibrae.paths.AssignmentResults

method), 228
set_cores() (aequilibrae.paths.TrafficAssignment

method), 238
set_cores() (aequilibrae.paths.TransitAssignment

method), 241
set_cores() (aequili-

brae.paths.TransitAssignmentResults method),
229

set_demand_matrix_core() (aequili-
brae.paths.TransitClass method), 235

set_fixed_cost() (aequilibrae.paths.TrafficClass
method), 234

set_frequency_field() (aequili-
brae.paths.TransitAssignment method), 242

set_graph() (aequilibrae.paths.Graph method), 225
set_graph() (aequilibrae.paths.TransitGraph method),

227
set_heuristic() (aequilibrae.paths.PathResults

method), 232
set_index() (aequilibrae.matrix.AequilibraeMatrix

method), 218
set_modes() (aequilibrae.project.network.Link

method), 202
set_path_file_format() (aequili-

brae.paths.TrafficAssignment method), 238
set_pce() (aequilibrae.paths.TrafficClass method), 234
set_save_path_files() (aequili-

brae.paths.TrafficAssignment method), 238
set_select_links() (aequilibrae.paths.TrafficClass

method), 234
set_skimming() (aequilibrae.paths.Graph method),

225
set_skimming() (aequilibrae.paths.TransitGraph

method), 227
set_time_field() (aequili-

brae.paths.TrafficAssignment method), 238

294 Index

AequilibraE Documentation

set_time_field() (aequili-
brae.paths.TransitAssignment method), 242

set_time_field() (aequilibrae.project.Network
method), 187

set_vdf() (aequilibrae.paths.TrafficAssignment
method), 238

set_vdf_parameters() (aequili-
brae.paths.TrafficAssignment method), 238

set_vot() (aequilibrae.paths.TrafficClass method), 234
setDescription() (aequili-

brae.matrix.AequilibraeMatrix method),
222

setName() (aequilibrae.matrix.AequilibraeMatrix
method), 221

setup() (in module aequilibrae), 177
skimmable_fields() (aequilibrae.project.Network

method), 185
SkimResults (class in aequilibrae.paths), 229
sql (aequilibrae.project.network.Links attribute), 195
sql (aequilibrae.project.network.Nodes attribute), 197
sql (aequilibrae.project.network.Periods attribute), 199
SyntheticGravityModel (class in aequili-

brae.distribution), 213

T
to_transit_graph() (aequili-

brae.transit.TransitGraphBuilder method),
249

total_flows() (aequilibrae.paths.AssignmentResults
method), 228

TrafficAssignment (class in aequilibrae.paths), 235
TrafficClass (class in aequilibrae.paths), 233
Transit (class in aequilibrae.transit), 245
TransitAssignment (class in aequilibrae.paths), 240
TransitAssignmentResults (class in aequili-

brae.paths), 228
TransitClass (class in aequilibrae.paths), 234
TransitGraph (class in aequilibrae.paths), 225
TransitGraphBuilder (class in aequilibrae.transit),

247

U
update_database() (aequilibrae.project.Matrices

method), 183
update_trace() (aequilibrae.paths.PathResults

method), 232

V
VDF (class in aequilibrae.paths), 232

W
write_back() (aequilibrae.Parameters method), 207
write_back() (aequilibrae.project.About method), 180

Z
Zone (class in aequilibrae.project), 190
zoning (aequilibrae.project.Project property), 179
Zoning (class in aequilibrae.project), 187

Index 295

	Examples
	Creating Models
	Editing networks
	Trip Distribution
	Visualization
	AequilibraE without a Model
	Assignment Workflows
	Other Applications
	Creating Models
	Project from OpenStreetMap
	Creating a zone system based on Hex Bins
	Hex Bins using Spatialite
	Centroid connectors

	Import GTFS
	Importing network from GMNS
	Project from a link layer

	Editing networks
	Editing network geometry: Nodes
	Editing network geometry: Links
	Editing network geometry: Splitting link

	Trip Distribution
	Running IPF without an AequilibraE model
	Reference

	Network skimming
	Network Skimming

	Path computation
	Path Computation

	Trip Distribution
	Forecast

	Visualization
	Creating Delaunay Lines
	Exploring the network on a notebook

	AequilibraE without a Model
	Traffic Assignment without an AequilibraE Model

	Assignment Workflows
	Public transport assignment with Optimal Strategies
	Graph building
	Connector project matching
	Saving and reloading
	Reading back into AequilibraE
	Converting to a AequilibraE graph object

	Spiess & Florian assignment
	Mock demand matrix
	Hyperpath generation/assignment
	Saving results

	Route Choice set generation
	Choice set generation
	Route Choice class

	Plotting choice sets

	Route Choice
	Route Choice
	Model parameters
	Mock demand matrix
	Route Choice class
	Select link analysis

	Forecasting
	Traffic assignment with skimming
	Trip distribution
	Calibration

	Forecast
	Impedance
	IPF for the future vectors

	Future traffic assignment
	Optional: Select link analysis
	We can also plot convergence

	Route Choice with sub-area analysis
	Route Choice
	Model parameters
	Mock demand matrix
	Sub-area preparation
	Sub-area analysis
	Automated sub-area analysis
	Manual sub-area analysis further preparation
	Sub-area visualisation
	Manual sub-area analysis

	Other Applications
	Logging to terminal
	Checking AequilibraE’s log
	Exporting network to GMNS
	Finding disconnected links

	Modeling with AequilibraE
	The AequilibraE project
	Project structure
	Package components: A conceptual view

	Parameters YAML File
	Assignment
	Distribution
	Network
	Link Fields
	Node fields
	Open Street Maps
	GMNS

	System
	Open Streeet Maps

	Project database
	About table
	Network
	Importing and exporting the network
	Dealing with Geometries
	Data consistency
	Network consistency behaviour
	Change behavior
	Node layer changes and expected behavior
	Creating a node
	Deleting a node
	Moving a node
	Adding a data field
	Deleting a data field
	Modifying a data entry

	Link layer changes and expected behavior
	Deleting a link
	Moving a link extremity
	Re-shaping a link
	Deleting a required field

	Field-specific data consistency
	Link distance
	Link direction
	modes field (Links and Nodes layers)
	link_type field (Links layer) & link_types field (Nodes layer)
	a_node and b_node

	Modes table
	Consistency triggers
	Changing the modes allowed in a certain link
	Directly changing the modes field in the nodes table
	Adding a new link
	Editing a mode in the modes table
	Adding a new mode to the modes table
	Removing a mode from the modes table

	Link types table
	Reserved values
	Adding new link_types to a project
	Consistency triggers
	Changes to reserved link_types
	Changing the link_type for a certain link
	Adding a new link
	Editing a link_type in the link_types table
	Adding a new link_type to the link_types table
	Removing a link_type from the link_types table

	Matrices
	Zones table
	Parameters metadata table
	Results
	SQL Data model
	Conventions
	Project tables
	about table structure
	attributes documentation table structure
	link types table structure
	links table structure
	matrices table structure
	modes table structure
	nodes table structure
	periods table structure
	results table structure
	transit graph configs table structure
	zones table structure

	Public Transport database
	SQL Data model
	Conventions
	Project tables
	agencies table structure
	attributes documentation table structure
	fare attributes table structure
	fare rules table structure
	fare zones table structure
	link types table structure
	links table structure
	modes table structure
	node types table structure
	nodes table structure
	pattern mapping table structure
	results table structure
	route links table structure
	routes table structure
	stop connectors table structure
	stops table structure
	trigger settings table structure
	trips table structure
	trips schedule table structure

	Static Traffic Assignment
	Multi-class Equilibrium assignment
	Cost function
	Technical requirements
	Convergence criteria
	Algorithms available
	Method of Successive Averages (MSA)
	Frank-Wolfe (FW)
	Conjugate Frank-Wolfe
	Biconjugate Frank-Wolfe

	Implementation details & tricks
	Multi-threaded implementation

	Handling the network
	Super-network

	References
	Traffic assignment and equilibrium

	Path-finding and assignment mechanics
	AequilibraE Graphs
	Directionality
	Graphs from a model
	Manipulating graphs in memory
	Skimming settings
	Setting centroids

	Traffic Assignment Procedure
	Traffic Assignment Class
	Volume Delay Function
	Traffic class
	Setting VDF Parameters
	Setting final parameters
	Setting Preloads
	Executing an Assignment

	References

	Transit assignment
	Hyperpath routing in the context of transit assignment
	Imports
	Bell’s network
	Vertices
	Plot the network

	Hyperpath computation
	References

	The Transit assignment graph
	Elements of a transit network
	Transit stops and stations
	Transit lines
	Transit routes
	Line segments

	Transit assignment zones and connectors
	The Assignment graph
	Link and node types
	Link attributes

	A Small example : Spiess and Florian
	Transit graph specificities in AequilibraE
	References

	Route Choice
	Costs, utilities and signs
	Choice set generation algorithms available
	Imports
	Full process overview
	Choice set generation algorithms
	Choice set construction algorithms
	Link-Penalization
	BFS-LE
	Experiment
	Code example
	References

	Route choice models
	Path-Size Logit (PSL)
	Binary logit filter
	References

	API Reference
	Project
	aequilibrae.project.Project
	Project Components
	aequilibrae.project.About
	aequilibrae.project.FieldEditor
	aequilibrae.project.Log
	aequilibrae.project.Matrices
	aequilibrae.project.Network
	aequilibrae.project.Zoning

	Project Objects
	aequilibrae.project.Zone

	Network Data
	aequilibrae.project.network.Modes
	aequilibrae.project.network.LinkTypes
	aequilibrae.project.network.Links
	aequilibrae.project.network.Nodes
	aequilibrae.project.network.Periods

	Network Items
	aequilibrae.project.network.Mode
	aequilibrae.project.network.LinkType
	aequilibrae.project.network.Link
	aequilibrae.project.network.Node
	aequilibrae.project.network.Period

	Parameters
	aequilibrae.Parameters

	Distribution
	aequilibrae.distribution.Ipf
	aequilibrae.distribution.GravityApplication
	aequilibrae.distribution.GravityCalibration
	aequilibrae.distribution.SyntheticGravityModel

	Matrix
	aequilibrae.matrix.AequilibraeData
	aequilibrae.matrix.AequilibraeMatrix

	Paths
	aequilibrae.paths.Graph
	aequilibrae.paths.TransitGraph
	aequilibrae.paths.AssignmentResults
	aequilibrae.paths.TransitAssignmentResults
	aequilibrae.paths.SkimResults
	aequilibrae.paths.PathResults
	aequilibrae.paths.VDF
	aequilibrae.paths.TrafficClass
	aequilibrae.paths.TransitClass
	aequilibrae.paths.TrafficAssignment
	aequilibrae.paths.TransitAssignment
	aequilibrae.paths.HyperpathGenerating
	aequilibrae.paths.OptimalStrategies

	Transit
	aequilibrae.transit.Transit
	aequilibrae.transit.TransitGraphBuilder

	Installation
	Installation
	Dependencies
	Spatialite
	Windows
	Ubuntu Linux
	MacOS

	Hardware requirements

	IPF Performance
	Traffic Assignment
	Validation
	Convergence Study
	Computational performance
	Want to run your own convergence study?

	Importing from Open Street Maps
	Python limitations

	Importing from files in GMNS format
	Exporting AequilibraE model to GMNS format
	Python Module Index
	Index

