aequilibrae.matrix.AequilibraeData#

class aequilibrae.matrix.AequilibraeData[source]#

AequilibraE dataset

__init__()[source]#

Methods

__init__()

create_empty([file_path, entries, ...])

Creates a new empty dataset

empty(*args, **kwargs)

export(file_name[, table_name])

Exports the dataset to another format.

load(file_path)

Loads dataset from file

random_name()

Returns a random name for a dataset with root in the temp directory of the user

classmethod empty(*args, **kwargs)[source]#
create_empty(file_path=None, entries=1, field_names=None, data_types=None, memory_mode=False, fill=None, index=None)[source]#

Creates a new empty dataset

Arguments:

file_path (str, Optional): Full path for the output data file. If memory_mode is ‘false’ and path is missing, then the file is created in the temp folder

entries (int, Optional): Number of records in the dataset. Default is 1

field_names (list, Optional): List of field names for this dataset. If no list is provided, the field ‘data’ will be created

data_types (np.dtype, Optional): List of data types for the dataset. Types need to be NumPy data types (e.g. np.int16, np.float64). If no list of types are provided, type will be np.float64

memory_mode (bool, Optional): If True, dataset will be kept in memory. If False, the dataset will be a memory-mapped numpy array

>>> from aequilibrae.matrix import AequilibraeData, AequilibraeMatrix

>>> mat = AequilibraeMatrix()
>>> mat.load('/tmp/test_project/matrices/demand.omx')
>>> mat.computational_view()

>>> vectors = "/tmp/test_project/vectors.aed"

>>> args = {
...      "file_path": vectors,
...      "entries": mat.zones,
...      "field_names": ["origins", "destinations"],
...      "data_types": [np.float64, np.float64]
... }

>>> dataset = AequilibraeData()
>>> dataset.create_empty(**args)
load(file_path)[source]#

Loads dataset from file

Arguments:

file_path (str): Full file path to the AequilibraeData to be loaded

>>> from aequilibrae.matrix import AequilibraeData

>>> dataset = AequilibraeData()
>>> dataset.load("/tmp/test_project/vectors.aed")
export(file_name, table_name='aequilibrae_table')[source]#

Exports the dataset to another format. Supports CSV and SQLite

Arguments:

file_name (str): File name with PATH and extension (csv, or sqlite3, sqlite or db)

table_name (str): It only applies if you are saving to an SQLite table. Otherwise ignored

>>> from aequilibrae.matrix import AequilibraeData

>>> dataset = AequilibraeData()
>>> dataset.load("/tmp/test_project/vectors.aed")
>>> dataset.export("/tmp/test_project/vectors.csv")
static random_name()[source]#

Returns a random name for a dataset with root in the temp directory of the user

>>> from aequilibrae.matrix import AequilibraeData

>>> name = AequilibraeData().random_name() 

# This is an example of output
# '/tmp/Aequilibrae_data_5werr5f36-b123-asdf-4587-adfglkjhqwe.aed'