7.12. Trip Distribution

On this example we calibrate a Synthetic Gravity Model that same model plus IPF (Fratar/Furness).

## Imports
from uuid import uuid4
from tempfile import gettempdir
from os.path import join
from aequilibrae.utils.create_example import create_example
import pandas as pd
import numpy as np

We create the example project inside our temp folder

fldr = join(gettempdir(), uuid4().hex)

project = create_example(fldr)
# We get the demand matrix directly from the project record
# so let's inspect what we have in the project
proj_matrices = project.matrices
proj_matrices.list()
name file_name cores procedure procedure_id timestamp description status
0 demand_omx demand.omx 1 None None 2020-11-24 08:47:18 Original data imported to OMX format
1 demand_mc demand_mc.omx 3 None None 2021-02-24 00:51:35 None
2 skims skims.omx 2 None None None Example skim
3 demand_aem demand.aem 1 None None 2020-11-24 08:46:42 Original data imported to AEM format


# We get the demand matrix
demand = proj_matrices.get_matrix("demand_omx")
demand.computational_view(["matrix"])

# And the impedance
impedance = proj_matrices.get_matrix("skims")
impedance.computational_view(["time_final"])

Let’s have a function to plot the Trip Length Frequency Distribution

from math import log10, floor
import matplotlib.pyplot as plt


def plot_tlfd(demand, skim, name):
    plt.clf()
    b = floor(log10(skim.shape[0]) * 10)
    n, bins, patches = plt.hist(
        np.nan_to_num(skim.flatten(), 0),
        bins=b,
        weights=np.nan_to_num(demand.flatten()),
        density=False,
        facecolor="g",
        alpha=0.75,
    )

    plt.xlabel("Trip length")
    plt.ylabel("Probability")
    plt.title("Trip-length frequency distribution")
    plt.savefig(name, format="png")
    return plt
from aequilibrae.distribution import GravityCalibration
for function in ["power", "expo"]:
    gc = GravityCalibration(matrix=demand, impedance=impedance, function=function, nan_as_zero=True)
    gc.calibrate()
    model = gc.model
    # we save the model
    model.save(join(fldr, f"{function}_model.mod"))

    # We can save an image for the resulting model
    _ = plot_tlfd(gc.result_matrix.matrix_view, impedance.matrix_view, join(fldr, f"{function}_tfld.png"))

    # We can save the result of applying the model as well
    # we can also save the calibration report
    with open(join(fldr, f"{function}_convergence.log"), "w") as otp:
        for r in gc.report:
            otp.write(r + "\n")
Trip-length frequency distribution

Out:

/home/runner/work/aequilibrae/aequilibrae/aequilibrae/distribution/gravity_application.py:315: RuntimeWarning: divide by zero encountered in power
  self.output.matrix_view[i, :] = (np.power(self.impedance.matrix_view[i, :], -self.model.alpha) * p
/home/runner/work/aequilibrae/aequilibrae/aequilibrae/distribution/gravity_application.py:326: RuntimeWarning: invalid value encountered in multiply
  self.output.matrix_view[:, :] = self.output.matrix_view[:, :] * non_inf

We save a trip length frequency distribution for the demand itself

plt = plot_tlfd(demand.matrix_view, impedance.matrix_view, join(fldr, "demand_tfld.png"))
plt.show()
Trip-length frequency distribution
## Forecast
#  * We create a set of * 'future' * vectors by applying some models
#  * We apply the model for both deterrence functions
from aequilibrae.distribution import Ipf, GravityApplication, SyntheticGravityModel
from aequilibrae.matrix import AequilibraeData
import numpy as np
zonal_data = pd.read_sql("Select zone_id, population, employment from zones order by zone_id", project.conn)
# We compute the vectors from our matrix


args = {
    "file_path": join(fldr, "synthetic_future_vector.aed"),
    "entries": demand.zones,
    "field_names": ["origins", "destinations"],
    "data_types": [np.float64, np.float64],
    "memory_mode": True,
}

vectors = AequilibraeData()
vectors.create_empty(**args)

vectors.index[:] = zonal_data.zone_id[:]

# We apply a trivial regression-based model and balance the vectors
vectors.origins[:] = zonal_data.population[:] * 2.32
vectors.destinations[:] = zonal_data.employment[:] * 1.87
vectors.destinations *= vectors.origins.sum() / vectors.destinations.sum()
# We simply apply the models to the same impedance matrix now
for function in ["power", "expo"]:
    model = SyntheticGravityModel()
    model.load(join(fldr, f"{function}_model.mod"))

    outmatrix = join(proj_matrices.fldr, f"demand_{function}_model.aem")
    apply = GravityApplication()
    args = {
        "impedance": impedance,
        "rows": vectors,
        "row_field": "origins",
        "model": model,
        "columns": vectors,
        "column_field": "destinations",
        "nan_as_zero": True,
    }

    gravity = GravityApplication(**args)
    gravity.apply()

    # We get the output matrix and save it to OMX too,
    gravity.save_to_project(name=f"demand_{function}_model_omx", file_name=f"demand_{function}_model.omx")

Out:

/home/runner/work/aequilibrae/aequilibrae/aequilibrae/distribution/gravity_application.py:315: RuntimeWarning: divide by zero encountered in power
  self.output.matrix_view[i, :] = (np.power(self.impedance.matrix_view[i, :], -self.model.alpha) * p
/home/runner/work/aequilibrae/aequilibrae/aequilibrae/distribution/gravity_application.py:326: RuntimeWarning: invalid value encountered in multiply
  self.output.matrix_view[:, :] = self.output.matrix_view[:, :] * non_inf
# We update the matrices table/records and verify that the new matrices are indeed there
proj_matrices.update_database()
proj_matrices.list()
name file_name cores procedure procedure_id timestamp description status
0 demand_omx demand.omx 1 None None 2020-11-24 08:47:18 Original data imported to OMX format
1 demand_mc demand_mc.omx 3 None None 2021-02-24 00:51:35 None
2 skims skims.omx 2 None None None Example skim
3 demand_aem demand.aem 1 None None 2020-11-24 08:46:42 Original data imported to AEM format
4 demand_power_model_omx demand_power_model.omx 1 Synthetic gravity trip distribution 8f03d738805e40cb97a852859d8b9ffd 2022-03-30 06:35:12.142354 Synthetic gravity trip distribution. POWER
5 demand_expo_model_omx demand_expo_model.omx 1 Synthetic gravity trip distribution c39c4314030a4f0bb02209bca3aab1e9 2022-03-30 06:35:12.521170 Synthetic gravity trip distribution. EXPO


### We now run IPF for the future vectors
args = {
    "matrix": demand,
    "rows": vectors,
    "columns": vectors,
    "column_field": "destinations",
    "row_field": "origins",
    "nan_as_zero": True,
}

ipf = Ipf(**args)
ipf.fit()

ipf.save_to_project(name="demand_ipf", file_name="demand_ipf.aem")
ipf.save_to_project(name="demand_ipf_omx", file_name="demand_ipf.omx")

Out:

<aequilibrae.project.data.matrix_record.MatrixRecord object at 0x7f0bec763850>
proj_matrices.list()
name file_name cores procedure procedure_id timestamp description status
0 demand_omx demand.omx 1 None None 2020-11-24 08:47:18 Original data imported to OMX format
1 demand_mc demand_mc.omx 3 None None 2021-02-24 00:51:35 None
2 skims skims.omx 2 None None None Example skim
3 demand_aem demand.aem 1 None None 2020-11-24 08:46:42 Original data imported to AEM format
4 demand_power_model_omx demand_power_model.omx 1 Synthetic gravity trip distribution 8f03d738805e40cb97a852859d8b9ffd 2022-03-30 06:35:12.142354 Synthetic gravity trip distribution. POWER
5 demand_expo_model_omx demand_expo_model.omx 1 Synthetic gravity trip distribution c39c4314030a4f0bb02209bca3aab1e9 2022-03-30 06:35:12.521170 Synthetic gravity trip distribution. EXPO
6 demand_ipf demand_ipf.aem 1 Iterative Proportional fitting a79ad0adee5046dc8183050b28922601 2022-03-30 06:35:12.814680 None
7 demand_ipf_omx demand_ipf.omx 1 Iterative Proportional fitting a79ad0adee5046dc8183050b28922601 2022-03-30 06:35:12.814680 None


project.close()

Total running time of the script: ( 0 minutes 3.322 seconds)

Gallery generated by Sphinx-Gallery